

 [image: _images/logo_deflex_big.svg]
 [https://github.com/reegis/deflex]
Contents

	deflex - flexible multi-regional energy system model for heat, power and mobility
	Installation

	Examples

	Improve deflex

	Citing deflex

	Gallery

	Documentation

	License

	Installation guide
	Basic version

	Installation of a solver (mandatory)

	Additional requirements (optional)

	Usage guide
	DeflexScenario

	Scripts

	Input data

	Results

	Plots

	General tools

	Reference
	Scenario

	Scripts

	Postprocessing

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Pull Request Guidelines

	Tips

	Development

	Authors

	Changelog
	0.3.1 (2021-05 ??)

	0.3.0 (2021-03-25)

	0.2.0 (2021-01-25)

Indices and tables

	Index

	Module Index

	Search Page

[image: workflow_pytests] [https://github.com/reegis/deflex/actions?query=workflow%3A%22tox+pytests%22] [image: workflow_checks] [https://github.com/reegis/deflex/actions?query=workflow%3A%22tox+checks%22] [image: Coverage Status] [https://coveralls.io/github/reegis/deflex?branch=master] [image: Documentation Status] [https://readthedocs.org/projects/deflex] [image: packaging] [https://github.com/reegis/deflex/actions?query=workflow%3Apackaging]

[image: lgt_general] [https://lgtm.com/projects/g/reegis/deflex/context:python] [image: lgt_alerts] [https://lgtm.com/projects/g/reegis/deflex/alerts/] [image: codacy] [https://app.codacy.com/gh/reegis/deflex?utm_source=github.com&utm_medium=referral&utm_content=reegis/deflex&utm_campaign=Badge_Grade] [image: Requirements Status] [https://requires.io/github/reegis/deflex/requirements/?branch=master]

[image: PyPI Package latest release] [https://pypi.org/project/deflex] [image: PyPI Wheel] [https://pypi.org/project/deflex] [image: Supported versions] [https://pypi.org/project/deflex] [image: Supported implementations] [https://pypi.org/project/deflex]

[image: Commits since latest release] [https://github.com/reegis/deflex/compare/v0.3.0...master] [image: licence] [https://spdx.org/licenses/MIT.html] [image: code_style] [https://black.readthedocs.io/en/stable/] [image: zenodo] [https://doi.org/10.5281/zenodo.3572594]

[image: _images/logo_deflex_big.svg]
 [https://github.com/reegis/deflex]
deflex - flexible multi-regional energy system model for heat, power and mobility

++++++ multi sectoral energy system of Germany/Europe ++++++ dispatch
optimisation ++++++ highly configurable and adaptable ++++++ multiple analyses
functions +++++

The following README gives you a brief overview about deflex. Read the full
documentation [https://deflex.readthedocs.io/en/latest/] for all
information.

	Installation

	Examples

	Improve deflex

	Citing deflex

	Gallery

	Documentation

	License

Installation

To run deflex you have to install the Python package and a solver:

	deflex is available on PyPi [https://pypi.org/project/deflex/] and can be
installed using pip install deflex.

	an LP-solver is needed such as CBC (default), GLPK, Gurobi*, Cplex*

	for some extra functions additional packages and are needed

* Proprietary solver

Examples

	Run pip install deflex[example] to get all dependencies.

	Create a local directory (e.g. /home/user/deflex_examples).

	Browse the examples [https://osf.io/9krgp/files/] for deflex v0.4.x or
download all examples as zip file [https://files.de-1.osf.io/v1/resources/9krgp/providers/osfstorage/620b67ed11da1c0120f56939/?zip=] and copy/extract them to your local directory.

	Read the comments of each example, execute it and modify it to your needs.
Do not forget to set a local path in the examples if needed.

	In parallel you should read the usage guide of the documentation to get
the full picture.

The example scripts will download the example scenarios to the $HOME/deflex
folder. It is also possible to browse the
example scenarios [https://osf.io/9krgp/files/].

Improve deflex

We are warmly welcoming all who want to contribute to the deflex library. This
includes the following actions:

	Write bug reports or comments

	Improve the documentation (including typos, grammar)

	Add features improve the code (open an issue first)

Citing deflex

Go to the Zenodo page of deflex [https://doi.org/10.5281/zenodo.3572594] to find the DOI of your version. To cite all deflex versions use:

[image: _images/zenodo.3572594.svg]
 [https://doi.org/10.5281/zenodo.3572594]

Gallery

The following figures will give you a brief impression about deflex.

[image: _images/model_regions.svg]Figure 1: Use one of the include regions sets or create your own one. You
can also include other European countries.

[image: _images/spreadsheet_examples.png]
Figure 2: The input data can be organised in spreadsheets or csv files.

[image: _images/mcp.svg]Figure 3: The resulting system costs of deflex have been compared with the
day-ahead prices from the Entso-e downloaded from Open Power System Data [https://open-power-system-data.org/]. The plot shows three different periods
of the year.

[image: _images/emissions.svg]Figure 4: It is also possible to get a time series of the average emissions. Furthermore,
it shows the emissions of the most expensive power plant which would be
replaced by an additional feed-in.

[image: _images/transmission.svg]Figure 5: The following plot shows fraction of the time on which the utilisation of the
power lines between the regions is more than 90% of its maximum capacity:

Documentation

The full documentation of deflex [https://deflex.readthedocs.io/en/latest/]
is available on readthedocs.

Go to the download page [http://readthedocs.org/projects/deflex/downloads/]
to download different versions and formats (pdf, html, epub) of the
documentation.

License

Copyright (c) 2016-2021 Uwe Krien

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Installation guide

The deflex package is available on PyPi [https://pypi.org/project/deflex/].

Basic version

The basic version of deflex can read, solve and analyse a deflex scenario.
Some additional functions such as spatial operations or plots need some extra
packages (see below). To install the latest stable version use:

pip install deflex

In case you have some old deflex scenario you can install the old stable phd version:

pip install https://github.com/reegis/deflex/archive/phd.zip

To get the latest features you can install the testing version:

pip install https://github.com/reegis/deflex/archive/master.zip

Installation of a solver (mandatory)

To solve an energy system a linear solver has to be installed. For the
communication with the solver Pyomo is used. Have a look at the Pyomo docs [https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html#supported-solvers] to learn about which solvers are supported.

The default solver for deflex is the CBC solver. Go to the
oemof.solph documentation [https://oemof-solph.readthedocs.io/en/latest/readme.html#installing-a-solver]
to get help for the solver installation.

Additional requirements (optional)

The basic installation can be used to compute scenarios (csv, xls, xlsx). For
some functions additional packages are needed. Some of these packages may need
OS specific packages. Please see the installation guide of each package if an
error occur.

	
	To run the example with plots you need the following packages:

	
	matplotlib (plotting)

	pytz (time zones)

	requests (download example files)

pip install deflex[example]

	
	To use the maps of the polygons, transmission lines etc.:

	
	pygeos (spatial operations)

	geopandas (maps)

pip install deflex[map]

	
	To develop deflex:

	
	pytest

	sphinx

	sphinx_rtd_theme

	pygeos

	geopandas

	requests

pip install deflex[dev]

Usage guide

THIS CHAPTER IS WORK IN PROGRESS…

	DeflexScenario

	Load input data

	Solve the energy system

	Store and restore the scenario

	Analyse the scenario

	Scripts

	Console scripts

	Python scripts

	Input data

	Overview

	High-level-input (mandatory)

	Electricity sector (mandatory)

	Heating sector (optional)

	Mobility sector (optional)

	Other (optional)

	Results

	Restore results

	Postprocessing

	Custom postprocessing

	Export all results

	Get common values from results

	Analyse flow cycles

	Analyse the energy system graph

	Get dual variables

	CHP allocation

	Arrange parts of the results

	Combine results and parameter

	Plots

	General tools

DeflexScenario

The scenario class DeflexScenario is a central
element of deflex.

All input data is stored as a dictionary in the input_data attribute of the
DeflexScenario class. The keys of the dictionary are names of the data
table and the values are pandas.DataFrame or pandas.Series with the
data.

[image: _images/deflex_scenario_class.svg]
Load input data

At the moment, there are two methods to populate this attribute from files:

	read_csv() - read a directory with all needed csv files.

	read_xlsx() - read a spread sheet in the .xlsx

To learn how to create a valid input data set see “REFERENCE”.

from deflex import scenario
sc = scenario.DeflexScenario()
sc.read_xlsx("path/to/xlsx/file.xlsx")
OR
sc.read_csv("path/to/csv/dir")

Solve the energy system

A valid input data set describes an energy system. To optimise the dispatch
of the energy system a external solver is needed. By default the CBC solver is
used but different solver are possible (see:
solver [https://pyomo.readthedocs.io/en/stable/solving_pyomo_models.html#supported-solvers]).

The simplest way to solve a scenario is the compute() method.

sc.compute()

To use a different solver one can pass the solver parameter.

sc.compute(solver="glpk")

Store and restore the scenario

The dump() method can be used to store the scenario. a solved scenario will
be stored with the results. The scenario is stored in a binary format and it is
not human readable.

sc.dump("path/to/store/results.dflx")

To restore the scenario use the restore_scenario function:

sc = scenario.restore_scenario("path/to/store/results.dflx")

Analyse the scenario

Most analyses cannot be taken if the scenario is not solved. However, the merit
order can be shown only based on the input data:

from deflex import DeflexScenario
from deflex import analyses
sc = DeflexScenario()
sc.read_xlsx("path/to/xlsx/file.xlsx")
pp = analyses.merit_order_from_scenario(sc)
ax = plt.figure(figsize=(15, 4)).add_subplot(1, 1, 1)
ax.step(pp["capacity_cum"].values, pp["costs_total"].values, where="pre")
ax.set_xlabel("Cumulative capacity [GW]")
ax.set_ylabel("Marginal costs [EUR/MWh]")
ax.set_ylim(0)
ax.set_xlim(0, pp["capacity_cum"].max())
plt.show()

With the de02_co2-price_var-costs.xlsx from the examples the code above will
produce the following plot:

[image: _images/merit_order_example_plot_simple.svg]Filling the area between the line and the x-axis with colors according the fuel
of the power plant oen get the following plot:

[image: _images/merit_order_example_plot_coloured.svg]IMPORTANT: This is just an example and not a source for the actual merit order
in Germany.

Scripts

Console scripts

The console scripts can be used to model a scenario without using Python
directly (Python need to be installed, though).

Get the help message by typing

deflex-compute --help

The reference can also be found here: main()

If you dumped your results you can also use postprocessing tools. Read the help
message for more information by typing:

deflex-result --help

The reference can also be found here: result()
See the results section for more information about the postprocessing function
and classes. Not all postprocessing tools can be used with the console script.

Python scripts

For the typical work flow (creating a scenario, loading the input data,
computing the scenario and storing the results) the
model_scenario() function can be used.

To collect all scenarios from a given directory the function
search_input_scenarios() can be used. The function will
search for .xlsx files or paths that end on _csv and cannot
distinguish between a valid scenario and any .xlsx file or paths that
accidentally contain _csv.

No matter how you collect a list of a scenario input data files the
batch_model_scenario() function makes it easier to run
each scenario and get back the relevant information about the run. It is
possible to ignore exceptions so that the script will go on with the following
scenarios if one scenario fails.

If you have enough memory and cpu capacity on your computer/server you can
optimise your scenarios in parallel. Use the
model_multi_scenarios() function for this task. You can
pass a list of scenario files to this function. A cpu fraction will limit the
number of processes as a fraction of the maximal available number of cpu cores.
Keep in mind that for large models the memory will be the limit not the cpu
capacity. If a memory error occurs the script will stop immediately. It is not
possible to catch a memory error. A log-file will log all failing and
successful runs.

Input data

The input data is stored in the input_data attribute of the
DeflexScenario
class (s. DeflexScenario). It is a dictionary with the name of the
data set as key and the data table itself as value (pandas.DataFrame or
pandas.Series).

The input data is divided into four main topics: High-level-inputs, electricity
sector, heating sector (optional) and mobility sector (optional).

Download examples (link) to get an idea of the typical structure. Then go on
with the following chapter to learn everything about how to define the data of
a deflex model.

	Overview

	High-level-input (mandatory)

	Electricity sector (mandatory)

	Heating sector (optional)

	Mobility sector (optional)

	Other (optional)

Overview

[image: _images/spreadsheet_examples.png]
A Deflex scenario can be divided into regions. Each region must have an
identifier number and be named after it as DEXX, where XX is the
number. For refering the Deflex scenario as a whole (i.e. the sum of all
regions) use DE only.

At the current state the distribution of fossil fuels is neglected. Therefore,
in order to keep the computing time low it is recommended to define them
supra-regional using DE without a number. It is still possible to define
them regional for example to add a specific limit for each region.

Note

The nomenclature above is the one used in the examples. It is also possible
to extend it e.g. for surrounding countries (AT, FR, PL…) or
to totally deviate from it. Nevertheless, it might be helpful to keep the
basic idea of using the country code of the top level domain [https://en.wikipedia.org/wiki/Country_code_top-level_domain] followed by
a number if subregions exist or without a number. This will help other users
to understand your data.

In most cases it is also sufficient to model the fossil part of the mobility
and the decentralised heating sector supra-regional. It is assumed that a
gas boiler or a filling station is always supplied with enough fuel, so that
only the annual values affect the model. This does not apply to electrical
heating systems or cars.

In most spread sheet software it is possible to connect cells to increase
readability. These lines are interpreted correctly. In csv files the values
have to appear in every cell. So the following two tables will be interpreted
equally!

Connected cells

	
	
	value

	DE01

	F1

	

	F2

	

	DE02

	F1

	

Unconnected cells

	
	
	value

	DE01

	F1

	

	DE01

	F2

	

	DE02

	F1

	

Note

NaN-values are not allowed in any table. Some columns are optional and can
be left out, but if a column is present there have to be values in every
row. Neutral values can be 0, 1 or inf.

High-level-input (mandatory)

	General

	Info

	Commodity sources

	Data sources

General

key: ‘general’, value: pandas.Series() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html]

This table contains basic data about the scenario.

	year

	

	co2 price

	

	number of time steps

	

	name

	

INDEX

	year: int, [-]

	A time index will be created starting with January 1, at 00:00 with the
number of hours given in number of time steps.

	co2 price: float, [€/t]

	The average price for CO2 over the whole time period.

	number of time steps: int, [-]

	The number of hourly time steps.

	name: str, [-]

	A name for the scenario. This name will be used to compare key values
between different scenarios. Therefore, it should be unique within a group
of scenarios. It does not have to be intuitive. Use the info table for
a human readable description of your scenario.

Info

key: ‘info’, value: pandas.Series() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html]

On this sheet, additional information that characterizes the scenario can be
added. The idea behind Info is that the user can filter stored scenarios using
the search_dumped_scenarios() function.

You can create any key-value pair which is suitable for a group of scenarios.

e.g. key: scenario_type value: foo / bar / foobar

Afterwards you can search for all scenarios where the scenario_type is
foo using search_dumped_scenarios(). See
documentation and examples of this function for more details.

	key1

	

	key2

	

	key3

	

	…

	…

Commodity sources

key: ‘commodity sources’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet requires data from all the commodities used in the scenario. The
data can be provided either supra-regional under DE, regional under DEXX or as a
combination of both, where some commodities are global and some are regional.
Regionalised commodities are especially useful for commodities with an annual
limit, for example bioenergy.

	
	
	costs

	emission

	annual limit

	DE

	F1

	
	
	

	F2

	
	
	

	DE01

	F1

	
	
	

	DE02

	F2

	
	
	

	…

	…

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Fuel type (e.g. natural gas or bionenergy).

COLUMNS

	costs: float, [€/MWh]

	The fuel production cost.

	emission: float, [t/MWh]

	The fuel emission factor.

	annual limit: float, [MWh]

	The annual maximum energy generation (if there is one, otherwise just use
inf). If the annual limit is inf in every line the column can be
left out.

Data sources

key: ‘data sources’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Highly recomended. Here the type data, the source name and the url from where
they were obtained can be listed. It is a free format and additional columns
can be added. This table helps to make your scenario as transparent as
possible.

	
	source

	url

	v1

	…

	cost data

	Institute

	http1

	a1

	…

	pv plants

	Organisation

	http2

	a2

	…

	…

	…

	…

	…

	…

Electricity sector (mandatory)

	Electricity demand series

	Power plants

	Volatiles plants

	Volatile series

	Power lines

	Electricity storages

Electricity demand series

key: ‘electricity demand series’,
value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet requires the electricity demand of the scenario as a time series. One summarised demand series for each region is enough, but it
is possible to distinguish between different types. This will not have any
effect on the model results but may help to distinguish the different flows in
the results.

	
	DE01

	DE02

	DE03

	…

	
	all

	industry

	buildings

	rest

	all

	…

	Time step 1

	
	
	
	
	
	…

	Time step 2

	
	
	
	
	
	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Specification of the series e.g. “all” for an overall series.

Power plants

key: ‘power plants’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

The power plants will feed in the electricity bus of the region the are
located. The data must be divided by region and subdivided by fuel. Each row
can indicate one power plant or a group of power plants. It is possible to add
additional columns for information purposes.

	
	
	capacity

	fuel

	efficiency

	annual electricity limit

	variable_cost

	downtime_factor

	source_region

	DE01

	N1

	
	
	
	
	
	
	

	N2

	
	
	
	
	
	
	

	N3

	
	
	
	
	
	
	

	DE02

	N2

	
	
	
	
	
	
	

	N3

	
	
	
	
	
	
	

	…

	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary. The combination of region and name is the unique
identifier for the power plant or the group of power plants.

COLUMNS

	capacity: float, [MW]

	The installed capacity of the power plant or the group of power plants.

	fuel: str, [-]

	The used fuel of the power plant or group of power plants. The combination
of source_region and fuel must exist in the commodity sources table.

	efficiency: float, [-]

	The average overall efficiency of the power plant or the group of power
plants.

	annual limit: float, [MWh]

	The absolute maximum limit of produced electricity within the whole
modeling period.

	variable_costs: float, [€/MWh]

	The variable costs per produced electricity unit.

	downtime_factor: float, [-]

	The time fraction of the modeling period in which the power plant or the
group of power plants cannot produce electricity. The installed capacity
will be reduced by this factor capacity * (1 - downtime_factor).

	source_region, [-]

	The source region of the fuel source. Typically this is the region of the
index or DE if it is a global commodity source. The combination of
source_region and fuel must exist in the commodity sources table.

Volatiles plants

key: ‘volatile plants’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Examples of volatile power plants are solar, wind, hydro, geothermal. Data
must be provided divided by region and subdivided by energy source. Each row
can indicate one plant or a group of plants. It is possible to add additional
columns for information purposes.

	
	
	capacity

	DE01

	N1

	

	
	N2

	

	DE02

	N1

	

	DE03

	N1

	

	
	N3

	

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary. The combination of the region and the name has to exist as
a time series in the volatile series table.

COLUMNS

	capacity: float, [MW]

	The installed capacity of the plant.

Volatile series

key: ‘volatile series’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet provides the normalised feed-in time series in
MW/MW installed. So each time series will multiplied with its installed
capacity to get the absolute feed-in. Therefore, the combination of region and
name has to exist in the volatile plants table.

	
	DE01

	DE02

	DE03

	…

	
	N1

	N2

	N1

	N1

	N3

	…

	Time step 1

	
	
	
	
	
	…

	Time step 2

	
	
	
	
	
	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name of the energy source specified in the previous sheet.

Power lines

key: ‘power lines’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

The power lines table defines the connection between the electricity buses of
each region of the scenario. There is no default connection. If no connection
is defined the regions will be self-sufficient.

	
	capacity

	efficiency

	DE01-DE02

	
	

	DE01-DE03

	
	

	DE02-DE03

	
	

	…

	…

	…

INDEX

	Name: str

	Name of the 2 connected regions separated by a dash. Define only one
direction. In the model one line for each direction will be created. If
both directions are defined in the table two lines for each direction will
be created for the model, so that the capacity will be the sum of both
lines.

COLUMNS

	capacity: float, [MW]

	The maximum transmission capacity of the power lines.

	efficiency:float, [-]

	The transmission efficiency of the power line.

Electricity storages

key: ‘storages’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Electricity storages is a particular case of storages (see
Storages). The condition to use a storage as an electricity storage
is to define electricity in the storage medium column.

Heating sector (optional)

	Heat demand series

	Decentralised heat

	Chp - heat plants

Heat demand series

key: ‘heat demand series’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

The heat demand can be entered regionally under DEXX or supra-regional under DE.
The only type of demand that must be entered regionally is district heating.
As recommendation, coal, gas, or oil demands should be treated supra-regional.

	
	DE01

	DE02

	
	DE

	
	district heating

	N1

	district heating

	N1

	N2

	…

	N3

	N4

	N5

	Time step 1

	
	
	
	
	
	
	
	
	

	Time step 2

	
	
	
	
	
	
	
	
	

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Name. Specification of the series e.g. district heating, coal, gas.
Except for district heating each combination of region and name must
exist in the decentralised heat table.

Decentralised heat

key: ‘decentralised heat’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet covers all heating technologies that are used to generate
decentralized heat. In this context decentralised does not mean regional it
represents the large group of independent heating systems. If there is no
specific reason to define a heating system regional they should be defined supra-regional.

	
	
	efficiency

	source

	source region

	DE01

	N1

	
	
	DE01

	DE02

	N1

	
	
	DE02

	N2

	
	
	DE02

	
	…

	
	
	…

	DE

	N3

	
	
	DE

	N4

	
	
	DE

	N5

	
	
	DE

INDEX

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Name, arbitrary.

COLUMNS

	efficiency: float, [-]

	The efficiency of the heating technology.

	source: str, [-]

	The source that the heating technology uses. Examples are coal, oil for
commodities, but it could also be electricity in case of a heat pump.
Except for electricity the combination of source and source region
has to exist in the commodity sources table. The electricity source
will be connected to the electricity bus of the region defined in
source region.

	source region: str

	The region where the source comes from (see source).

Chp - heat plants

key: ‘chp-heat plants’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet covers CHP and heat plants. Each plant will feed into the
district heating bus of the region it it is located. The demand of
district heating is defined in the heat demand series table with the name
district heating. All plants of the same region with the same fuel can be
defined in one row but it is also possible to divide them by additional
categories such as efficiency etc.

	
	
	limit heat chp

	capacity heat chp

	capacity elec chp

	limit hp

	capacity hp

	efficiency hp

	efficiency heat chp

	efficiency elec chp

	fuel

	source region

	DE01

	N1

	
	
	
	
	
	
	
	
	
	DE01

	N3

	
	
	
	
	
	
	
	
	
	DE

	N4

	
	
	
	
	
	
	
	
	
	DE

	DE02

	N1

	
	
	
	
	
	
	
	
	
	DE02

	N2

	
	
	
	
	
	
	
	
	
	DE02

	N3

	
	
	
	
	
	
	
	
	
	DE

	N4

	
	
	
	
	
	
	
	
	
	DE

	N5

	
	
	
	
	
	
	
	
	
	DE

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary.

COLUMNS

	limit heat chp: float, [MWh]

	The absolute maximum limit of heat produced by chp within the whole
modeling period.

	capacity heat chp: float, [MW]

	The installed heat capacity of all chp plants of the same group in the
region.

	capacity elect chp: float, [MW]

	The installed electricity capacity of all chp plants of the same group in
the region.

	limit hp: float, [MWh]

	The absolute maximum limit of heat produced by the heat plant within the
whole modeling period.

	capacity hp: float, [MW]

	The installed heat capacity of all heat of the same group in the region.

	efficiency hp: float, [-]

	The average overall efficiency of the heat plant.

	efficiency heat chp: float, [-]

	The average overall heat efficiency of the chp.

	efficiency elect chp: float, [-]

	The average overall electricity efficiency of the chp.

	fuel: str, [-]

	The used fuel of the plants. The fuel name must be equal to the fuel
type of the commodity sources. The combination of fuel and
source region has to exist in the commodity sources table.

	source_region, [-]

	The source region of the fuel source. Typically this is the region of the
index or DE if it is a global commodity source.

Mobility sector (optional)

	Mobility demand series

	Mobility

Mobility demand series

key: ‘mobility series’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

The mobility demand can be entered regionally or supra-regional. However, it is
recommended to define the mobility demand supra-regional except for
electricity. The demand for electric mobility has be defined regional because
it will be connected to the electricity bus of each region. The combination of
region and name has to exist in the mobility table.

	
	DE01

	DE02

	…

	DE

	
	electricity

	electricity

	
	N1

	Time step 1

	
	
	
	

	Time step 2

	
	
	
	

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Specification of the series e.g. “electricity” for each region or “diesel”,
“petrol” for DE.

Mobility

key: ‘mobility’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet covers the technologies of the mobility sector.

	
	
	efficiency

	source

	source region

	DE01

	electricity

	
	electricity

	DE01

	DE02

	electricity

	
	electricity

	DE02

	…

	
	
	
	

	DE

	N1

	
	oil/biofuel/H2/etc

	DE

INDEX

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Name, arbitrary.

COLUMNS

	efficiency: float, [-]

	The efficiency of the fuel production. If a diesel demand is defined in
the mobility demand series table the efficiency represents the
efficiency of diesel production from the commodity source e.g. oil. For
a biofuel demand the efficiency of the production of biofuel from
biomass has to be defined.

	source: str, [-]

	The source that the technology uses. Except for electricity the
combination of source and source region has to exist in the
commodity sources table. The electricity source will be connected to
the electricity bus of the region defined in source region.

	source region: str, [-]

	The region where the source comes from.

Other (optional)

	Storages

	Other converters

	Other demand series

	Demand response

Storages

key: ‘storages’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Different type of storages can be defined in this table. All different
storage technologies (pumped hydro, batteries, compressed air, hydrogen, etc) have to be
entered in a general way. Each row can indicate one storage or a group of
storages. If the storage medium is electricity, then the storage must exist in a region DEXX. Otherwise, the storage can be defined under DE. It is possible to add additional columns for information purposes.

	
	
	storage medium

	energy content

	energy inflow

	charge capacity

	discharge capacity

	charge efficiency

	discharge efficiency

	loss rate

	DE01

	S1

	electricity

	
	
	
	
	
	
	

	
	S2

	electricity

	
	
	
	
	
	
	

	DE02

	S1

	electricity

	
	
	
	
	
	
	

	DE

	S3

	hydrogen

	
	
	
	
	
	
	

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary.

COLUMNS

	storage medium: str

	The medium used to store energy. The storage medium must be defined in commodities, or it must be electricity.

	energy content: float, [MWh]

	The maximum energy content of a storage or a group storages.

	energy inflow: float, [MWh]

	The amount of energy that will feed into the storage of the model period in
MWh. For example a river into a pumped hydroelectric energy storage.

	charge capacity: float, [MW]

	Maximum capacity to charge the storage or the group of storages.

	discharge capacity: float, [MW]

	Maximum capacity to discharge the storage or the group of storages.

	charge efficiency: float, [-]

	Charging efficiency of the storage or the group of storages.

	discharge efficiency: float, [-]

	Discharging efficiency of the storage or the group of storages.

	loss rate: float, [-]

	The relative loss of the energy content of the storage. For example a loss
rate or 0.01 means that the energy content of the storage will be
reduced by 1% in each time step.

Other converters

key: ‘other converters’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Here, other converters than the ones already set, can be defined for linking different buses. A good example here is an electrolyser which connects electricity with hydrogen. Each converter has a source and a target bus with their respective regions. Other converter´s format is analogous to that of power plants and heat plants.

	
	
	capacity

	annual limit

	efficiency

	variable costs

	downtime factor

	source

	source region

	target

	target region

	DE

	electrolyser1

	
	
	
	
	
	electricity

	DE01

	hydrogen

	DE

	DE

	electrolyser2

	
	
	
	
	
	electricity

	DE02

	hydrogen

	DE

	DE01

	C1

	
	
	
	
	
	S1

	DE01

	T1

	DE01

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary. The combination of region and name is the unique
identifier for the converter or the group of converters.

COLUMNS

	capacity: float, [MW]

	The installed capacity of the converter or the group of converters.

	annual limit: float, [MWh]

	The absolute maximum limit of produced target units within the whole
modeling period.

	efficiency: float, [-]

	The average overall efficiency of the converter or the group of converters.

	variable_costs: float, [€/MWh]

	The variable costs per produced target unit.

	downtime_factor: float, [-]

	The time fraction of the modeling period in which the converter or the
group of converters cannot produce target units. The installed capacity
will be reduced by this factor capacity * (1 - downtime_factor).

	source: str, [-]

	The source bus of the converter or group of converters. The combination
of source_region and source must exist in the commodity sources table or it can be electricity with its region DEXX.

	source_region, [-]

	The source region of the source. Typically this is the region of the
index or DE if it is a global commodity source.

	target: str, [-]

	The target bus of the converter or group of converters. The combination
of target_region and target must exist in the commodity sources table or it can be electricity with its region DEXX.

	trget_region, [-]

	The target region of the target. Typically this is the region of the
index or DE if it is a global commodity target.

Other demand series

key: ‘other demand series’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Here, other demands different from electricity, heat or mobility can be entered as time series. Examples are hydrogen or synthetic fuel for the industry sector.
The demands can be entered regionally under DEXX or supra-regional under DE. The format here is analogous to that of electricity, heat and mobility demand series.

	
	DE01

	DE02

	DE

	
	D1

	D2

	D1

	D3

	hydrogen

	syn fuel

	
	sector 1

	sector 1

	sector 2

	sector 3

	industry

	industry

	Time step 1

	
	
	
	
	
	

	Time step 2

	
	
	
	
	
	

	…

	…

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Name. Specification of the series e.g. hydrogen, syn fuel.

	level 2: str

	Sector name. Specification of the series e.g. industry, LULUCF. This extra level is used to differentiate the sector in which the commodity is used, since the same commodity may be used in different sectors.

Demand response

key: ‘demand response’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Demand response, also known as demand side management is used to represent flexibility in the demand time series. Because of that it is applied on the four different demand series. There is the option of using two different methods of demand response: the interval and the delay one. The documentation of both methods con be found in SinkDSM [https://oemof-solph.readthedocs.io/en/latest/usage.html#oemof-solph-custom-sinkdsm-label] where the interval method corresponds to “oemof” and the delay to “DIW” method. Depending on whether the interval or delay method is used, the shift interval or delay columns must be used. Finally, there is also the option of adding a price to use this feature.

	
	
	
	
	capacity up

	capacity down

	method

	shift interval

	delay

	cost up

	cost down

	mobility demand series

	DE01

	electricity

	None

	
	
	interval

	8

	0

	
	

	DE02

	electricity

	None

	
	
	interval

	8

	0

	
	

	DE

	oil

	None

	
	
	delay

	0

	10

	
	

	electricity demand series

	DE01

	all

	None

	
	
	interval

	8

	0

	
	

	DE02

	indsutry

	None

	
	
	interval

	8

	0

	
	

	DE02

	buildings

	None

	
	
	interval

	8

	0

	
	

	heat demand series

	DE01

	heat pump

	None

	
	
	interval

	6

	0

	
	

	DE

	natural gas

	None

	
	
	delay

	6

	0

	
	

	other demand series

	DE

	hydrogen

	indsutry

	
	
	delay

	0

	12

	
	

INDEX

	level 0: str

	Name of the demand serie.

	level 1: str

	Region (e.g. DE01, DE02 or DE)

	level 2: str

	Specification of the serie. The combination of region and
specification of the serie has to exist in the corresponding demand serie sheet.

	level 3: str

	Sector name. This extra index is for when other demand series is used. If this is not the case, just write None instead.

COLUMNS

	capacity up: float, [MW]

	The maximum limit with respect to the demand, to which the demand can be increased.

	capacity down: float, [MW]

	The minimum limit with respect to the demand, to which the demand can be reduced.

	method: str, [-]

	The method chosen to be used.

	shift interval: str, [-]

	If the interval method is used, this column indicates the maximum interval that the demand can be shifted.

	delay: str, [-]

	If the deelay method is used, this column indicates the maximum delay that demand can be shifted.

	cost up: float, [€/MWh]

	The variable costs per shifted up unit

	cost down: float, [€/MWh]

	The variable costs per shifted down unit.

Results

All results are stored in the
results attribute of the
DeflexScenario class. It is a dictionary with
the following keys:

	main – Results of all variables (result dictionary from oemof.solph)

	param – Input parameter

	meta – Meta information and tags of the scenario

	problem – Information about the linear problem such as lower bound,
upper bound etc.

	solver – Solver results

	solution – Information about the found solution and the objective value

The deflex package provides some analyse functions as described below but
it is also possible to write your own post processing based on the oemof.solph
API. See the
results chapter of the oemof.solph documentation [https://oemof-solph.readthedocs.io/en/latest/usage.html#handling-results]
to learn how to handle the results.

Restore results

Most postprocessing functions need the results dictionary of the
DeflexScenario as an input. So it is possible to restore only the results
dictionary. Nevertheless, also the whole DeflexScenario object can be
restored.

	restore_scenario() – restore a full scenario

	restore_results() – restore only the results dictionary.

Both function need the full file name (including the path) to the dumped
scenario as input parameter. If you have many dumped files onn your hard disc
you can use a search function to find and filter the files.

	search_dumped_scenarios() – search dump files on your hard disc.

The output of the search function can be directly used in the restore
functions from above.

Postprocessing

There are different types of postprocessing functions available. Some can be
used to verify the overall behaviour of the model. This can be used for
debugging but also for plausibility checks. Some can be used to calculated
additional key values from the results or to prepare the results to calculate
further values. Furthermore, it is possible to get the result from all
model variables in the xlsx or csv format.

For most postprocessing calculations cycles can cause problems because
assumptions are needed on how to deal with the cycles and it is difficult to
implement all possible assumptions in the functions. Therefore it might be
easier to use the basic preparation functions and write your own calculations.
See below on how to identify different kind of cycles.

Custom postprocessing

For a custom post processing it is possible to filter, group and prepare the
results to ones own needs. Use dictionary and list comprehensions to find the
needed flows and groups. The label and the class of the nodes can be used to
filter the nodes.

The keys of the results["main"] dictionary are tuples.

	FLows: (<from_node>, <to_node>)

	Components (<component>, None)

	Buses (<bus>, None)

A node can be a component or a bus. The values of the tuples are the objects
or None.

Get the keys of all buses:

from oemof.solph import Bus
bus_keys = [k for k in results["Main"].keys()
 if isinstance(k[0], Bus) and k[1] is None]

Get a list of buses:

from oemof.solph import Bus
buses = [k[0] for k in results["Main"].keys()
 if isinstance(k[0], Bus) and k[1] is None]

Get a table of all flows from pv sources:

Long version:

import pandas as pd
pv_keys = [
 k
 for k in results["Main"].keys()
 if k[0].label.tag == "volatile" and k[0].label.subtag == "solar"
]
pv = {}
for pv_key in pv_keys:
 pv[dflx.label2str(pv_key[0].label)] = results["Main"][pv_key][
 "sequences"
]["flow"]
print(pd.DataFrame(pv))

Short version:

import pandas as pd
pv = {
 dflx.label2str(k[0].label): v["sequences"]["flow"]
 for k, v in results["Main"].items()
 if k[0].label.tag == "volatile" and k[0].label.subtag == "solar"
}
print(pd.DataFrame(pv))

For more information about the results handling also see the
results chapter of the oemof.solph documentation [https://oemof-solph.readthedocs.io/en/latest/usage.html#handling-results].

The following table gives an overview over the used classes and the naming of
the label of the deflex components and buses. Each label is a nametuple with
the fields cat, tag, subtag and region.

Classes and labels of deflex nodes

	
	class

	cat

	tag

	subtag

	region

	commodity bus

	Bus

	commodity

	all

	<fuel>

	<region>

	electricity bus

	Bus

	electricity

	all

	all

	<region>

	district heating bus

	Bus

	heat

	district

	all

	<region>

	decentralised heat bus

	Bus

	heat

	decentralised

	<fuel>

	<region>

	mobility bus

	Bus

	mobility

	all

	<name>

	<region>

	shortage source

	Source

	shortage

	<cat of bus>

	<subtag of bus>

	<region>

	commodity source

	Source

	source

	commodity

	<fuel>

	<region>

	volatile source

	Source

	source

	volatile

	<name>

	<region>

	power line

	Transformer

	line

	electricity

	<from region>

	<to region>

	mobility system

	Transformer

	mobility system

	<name>

	<fuel>

	<region>

	chp plant

	Transformer

	chp plant

	<name>

	<fuel>

	<region>

	decentralised heat system

	Transformer

	decentralised heat

	<name>

	<fuel>

	<region>

	heat plant

	Transformer

	heat plant

	<name>

	<fuel>

	<region>

	power plant

	Transformer

	power plant

	<name>

	<fuel>

	<region>

	other converter

	Transformer

	other converter

	<name>

	<fuel>

	<region>

	excess sink

	Sink

	excess

	<cat of bus>

	<subtag of bus>

	<region>

	electricity demand

	Sink

	electricity demand

	electricity

	<name>

	<region>

	district heat demand

	Sink

	heat demand

	district

	all

	<region>

	decentralised heat demand

	Sink

	heat demand

	decentralised

	<fuel>

	<region>

	mobility demand

	Sink

	mobility demand

	mobility

	<name>

	<region>

	other demand

	Sink

	other demand

	other

	<fuel>

	<region>

	storages

	GenericStorage

	storage

	<medium>

	<name>

	<region>

Export all results

To export the results from all variables into the xlsx or csv format,
the results can be stored in a collection of pandas.DataFrame. This collection
can be stored into a file. An example for this workflow can be found in the
documentation of the function:

	get_all_results() – get all results as dictionary

	dict2file() – store the dictionary into a file

Get common values from results

The following values will be returned on an hourly base:

	marginal costs [EUR/MWh]

	highest emission [tons/MWh]

	lowest emission [tons/MWh]

	marginal costs power plant [-]

	emission of marginal costs power plant [tons/MWh]

	deflex.calculate_key_values() – get key values on an hourly base

At the moment this works only with hourly time steps. This function is still
work in progress and may return more key values in the future. Please write an
issue on github [https://github.com/reegis/deflex] for a discussion about
further values.

Analyse flow cycles

As a directed graph is used to define an energy system. Cycles are defined as
a group of successive directed flows, where the first and the last node or bus
are the same. Small cycles are all storages. As this is a trivial solution of
a cycle analysis storages can be excluded. Another kind of cycles are the
combination of electrolysis and hydrogen power plants. Power lines will also
cause cycles. Pure power line cycles can also be excluded but this will not
exclude a cycle cause by an electrolysis in one region and a hydrogen power
plant in another even though a power line is included in this cycle.

A cycle may not be a problem if it is not used as a cycle in the system. So it
is also possible to analyse the usage of the cycle:

	cycle – a cycle that can be used within the model

	used cycle – a cycle in which all involved flows are used at least once.

	suspicious cycle – a cycle in which all involved flows are used within one
time step.

The following functions are available

	Cycles() – initialise a Cycle object

	cycles() – all cycles in one table per cycle

	used_cycles() – all used cycles in one table per
cycle

	suspicious_cycles() – all suspicious cycles in one
table per cycle

	get_suspicious_time_steps() – get the time steps in
which all flows are active

	print() – print an overview of all existing cycles

	details() – print a more detailed overview of all
existing cycles

Analyse the energy system graph

It is possible to convert the graph of the EnergySystem class into an nxgraph
of networkx. So, it is possible to use all methods and functions of networkx
associate with a directed graph (DiGraph). Furthermore, deflex provides some
function to associate colors with types of nodes or with the total weight of an
edge (flow). This can be used if the graph is exported to a graphml file.
Such a file can be opened in e.g. yEd where the colors can be used to display
the nodes and edges in the associated colors.

	DeflexGraph() – initialise a DeflexGraph object

	nxgraph() – get an DiGraph of networkx

	write() – export the graph to a graphml file

	color_edges_by_weight() – associate a color
from a color map according to the total weight

	color_nodes_by_type() – associate a color by
the type of the node

	color_nodes_by_substring() – associate a color
by a substring of the label of the node

	group_nodes_by_type() – group all nodes of the
graph by their type

Get dual variables

The dual variable is available for all buses in the energy system.

fetch_dual_results() – Get the resulta of the dual variables
of all buses in one table

CHP allocation

These tool are mostly not connected to deflex but could be used in any context.
The functions just implement typical allocation methods in Python code:

	allocate_fuel_deflex() – allocate the fuel with default values from a config file

	allocate_fuel() – allocate the fuel with all values
defined by the user

	efficiency_method() – efficiency method

	exergy_method() – carnot or exergy method

	finnish_method() – alternative_generation or finnish
method

	iea_method() – IEA method

Arrange parts of the results

This parts can be used for plots and identification of the model

	solver_results2series() – get the results returned from
the external solver

	meta_results2series() – get some general and meta results

	group_buses() – group all buses by label

	get_time_index() – get the used time index

	nodes2table() – get an overview about all nodes and their total in- and outflows

Combine results and parameter

The following functions can be used for further calculations. See the
examples for more information.

	fetch_converter_parameters() – get all values related to
the converter

	fetch_attributes_of_commodity_sources() – get the values
of the commodity sources

	get_combined_bus_balance() – combine buses in a
multiregion model

	get_converter_balance() – the energy balance around
converter to calculate emissions and costs

TABLE of LABELS!!!!

Plots

Deflex does not include plotting function as plotting is mostly a very
individual part and there are already a lot of useful packages available.
Nevertheless, deflex provides maps for the default region sets and some example
on how to create spatial plots. The maps can be access using the following
functions.

	deflex_geo() – Get the default maps of deflex

	divide_off_and_onshore() – distinguish offshore and
onshore regions in a given map

General tools

Solph and deflex use logging messages to give a feedback from the running
program, so deflex provides an easy function to activate the logger on the
INFO level:

	use_logging()

Some functions does not return a table but a set of table. To store these set
of tables in a xlsx-map or a collection of csv-files the following function
can be used.

	dict2file()

Reference

Scenario

Scenario class

	deflex.DeflexScenario([meta, input_data, …])

	The Deflex Scenario is the center of a deflex energy model.

Read/Write a scenario

	deflex.DeflexScenario.read_xlsx(filename)

	Load scenario data from an xlsx file.

	deflex.DeflexScenario.read_csv(path)

	Load scenario from a csv-collection.

	deflex.create_scenario(path[, file_type])

	Create a deflex scenario object from file.

	deflex.search_input_scenarios(path[, csv, …])

	Search for files with an .xlsx extension or directories ending with ‘_csv’.

	deflex.DeflexScenario.to_xlsx(filename)

	Store the input data into an xlsx-file.

	deflex.DeflexScenario.to_csv(path)

	Store the input data as a csv-collection.

	deflex.DeflexScenario.dump(filename)

	Store a solved scenario class into the binary pickle format.

	deflex.DeflexScenario.store_graph(filename, …)

	Store the EnergySystem graph into a .graphml file.

Compute scenario

	deflex.DeflexScenario.compute([solver, …])

	Create a solph.Model from the input data and optimise it using an external solver.

Advanced scenario methods

	deflex.DeflexScenario.check_input_data()

	Check the input data for NaN values.

	deflex.DeflexScenario.table2es()

	Create a populated solph.EnergySystem from the input data.

	deflex.DeflexScenario.create_model()

	Create a solph model from an EnergySystem object.

	deflex.DeflexScenario.create_nodes()

	Creates solph components and buses from the input data and store them in a dictionary with unique IDs as keys.

	deflex.DeflexScenario.solve(model[, solver, …])

	Solve the solph.Model.

	deflex.DeflexScenario.initialise_energy_system()

	Create a solph.EnergySystem and store it in the es attribute.

	deflex.DeflexScenario.add_nodes_to_es(nodes)

	Add nodes to an existing solph.EnergySystem.

Scripts

Python scripts

	deflex.model_scenario([path, file_type, …])

	Compute a deflex scenario with the full work flow:

	deflex.batch_model_scenario(path[, …])

	Model a single scenario in batch mode.

	deflex.model_multi_scenarios(scenarios[, …])

	Model multi scenarios in parallel.

Console scripts

	deflex.console_scripts.main()

	deflex-compute [-h] [–version] [–results [RESULTS]] [–dump [DUMP]] [–solver [SOLVER]] path

	deflex.console_scripts.result()

	deflex-results [-h] [–version] [–filetype [FILETYPE]] function in_path out_path

Postprocessing

Restore dumped scenarios

	deflex.search_dumped_scenarios(path[, extension])

	Filter results by extension and meta data.

	deflex.restore_scenario(filename[, …])

	Restore a full Scenario from a dump file (.dflx).

	deflex.restore_results(file_names[, …])

	Restore only the result dictionary from a dumped scenario or a list of dumped scenarios.

Analyse and draw graph

	deflex.postprocessing.graph.Edge(**kwargs)

	An edge of a DeflexGraph

	deflex.DeflexGraph(results, **kwargs)

	The deflex model graph with a networkx representation.

	deflex.DeflexGraph.nxgraph(**kwargs)

	Get a networkx.DiGraph() from the deflex results.

	deflex.DeflexGraph.write(filename, **kwargs)

	Write the graph into a .graphml file.

	deflex.DeflexGraph.color_edges_by_weight([…])

	Color all edges by their weight using a matplotlib color map (cmap).

	deflex.DeflexGraph.color_nodes_by_type(colors)

	Color all nodes in a specific color according to their class.

	deflex.DeflexGraph.color_nodes_by_substring(colors)

	Color all nodes in a specific color according to a given substring.

	deflex.DeflexGraph.group_nodes_by_type([…])

	Group all nodes by types returning a dictionary with the types or the name of the types as keys and the list of nodes as value.

Analyse cycles

	deflex.Cycles(results[, storages, lines, digits])

	Detect all simple cycles in the directed graph.

	deflex.Cycles.cycles

	Get all cycles of the model.

	deflex.Cycles.used_cycles

	Get all cycles from a list of cycles that are used.

	deflex.Cycles.suspicious_cycles

	Get all cycles from a list of cycles that are suspicious.

	deflex.Cycles.get_suspicious_time_steps()

	Detect the time steps of a cycle in which all flows are non-zero.

	deflex.Cycles.print()

	Print an overview of the cycles.

	deflex.Cycles.details()

	Print out a more detailed overview over the existing cycles.

Basic results processing

	deflex.get_all_results(results)

	Get all results from a computed deflex scenario.

	deflex.nodes2table(results[, no_sums])

	Get a table with all nodes as a MultiIndex with the sum of their in an out flows.

	deflex.solver_results2series(results)

	Get the meta results from the solver.

	deflex.fetch_dual_results(results[, bus, …])

	Collect all the results of the dual variables.

	deflex.meta_results2series(results)

	Get meta results as a pandas.Series

	deflex.get_time_index(results)

	Get the time index of the model.

	deflex.calculate_key_values(results[, …])

	Get time series of typical key values.

Advanced results processing

	deflex.group_buses(buses, fields)

	Group buses by parts of the label.

	deflex.fetch_converter_parameters(results, …)

	Fetch relevant parameters of every Transformer of the energy system.

	deflex.fetch_attributes_of_commodity_sources(results)

	Get the attributes of the commodity sources.

	deflex.get_combined_bus_balance(results[, …])

	Combine different buses of the same type.

	deflex.get_converter_balance(results[, cat, …])

	Get the balance around the converters of the system.

Tools for Electricity models

	deflex.merit_order_from_scenario(scenario[, …])

	Create a merit order from a deflex scenario.

	deflex.merit_order_from_results(result)

	Create a merit order from deflex results.

Geometry examples for plotting

	deflex.deflex_geo(rmap)

	Fetch default deflex geometries as a named tuple with the following fields:

	deflex.divide_off_and_onshore(regions)

	Sort regions into onshore and offshore regions (Germany).

General tools

	deflex.dict2file(tables, path[, filetype, …])

	
	param tables

	

	deflex.use_logging(**kwargs)

	

CHP allocation tools

	deflex.allocate_fuel_deflex(method, eta_e, …)

	Allocate the fuel input of chp plants to the two output flows.

	deflex.allocate_fuel(method, eta_e, eta_th, …)

	Allocate the fuel input of chp plants to the two output flows: heat and electricity.

	deflex.efficiency_method(eta_e, eta_th)

	Efficiency Method - a method to allocate the fuel input of chp plants to the two output flows: heat and electricity

	deflex.exergy_method(eta_e, eta_th, eta_c)

	Exergy Method or Carnot Method- a method to allocate the fuel input of chp plants to the two output flows: heat and electricity

	deflex.finnish_method(eta_e, eta_th, …)

	Alternative Generation or Finnish Method - a method to allocate the fuel input of chp plants to the two output flows: heat and electricity

	deflex.iea_method(eta_e, eta_th)

	IEA Method (International Energy Association - a method to allocate the fuel input of chp plants to the two output flows: heat and electricity

deflex.DeflexScenario

	
class deflex.DeflexScenario(meta=None, input_data=None, es=None, results=None)

	The Deflex Scenario is the center of a deflex energy model. It can store
the needed input data and the results after a successful optimisation.
a inherits from the Scenario class and extends the
Scenario class with valid nodes creation. Additionally one can define
an extra_regions attribute to create an extra commodity source for these
regions. This makes it possible to create a source balance for these
regions.

	Parameters

	
	meta (dict) – Meta information of the DeflexScenario (optional).

	input_data (dict) – A dictionary of tables in the deflex scenario style (optional).

	es (oemof.solph.EnergySystem) – An Energy system (optional).

	results (dict) – A valid Deflex results dictionary (optional).

	
input_data

	The input data is organised in a dictionary of pandas.DataFrame/
pandas.Series. The keys are the data names (string) and the values are
the data tables.

	Type

	dict

	
results

	There are different sub-sections of the results. The dictionary has
got the following keys:

	main – Results of all variables
(result dictionary from oemof.solph)

	param – Input parameter

	meta – Meta information and tags of the scenario

	problem – Information about the linear problem such as
lower bound, upper bound etc.

	solver – Solver results

	solution – Information about the found solution and the objective
value

The model results are stored in the main section. It contains
another dictionary with tuples as keys and the
results of the variables as values (nested dictionary with
pandas.DataFrame). The tuples contain the node object in the following
form: (from_node, to_node) for flows and (node, None) for components.
See the solph documentation [https://oemof-solph.readthedocs.io/en/latest/usage.html]
for more details.

	Type

	dict

	
meta

	Meta information that can be used to search for in stored scenarios.
The dictionary keys can be used like tags or categories.

	Type

	dict

	
es

	This attribute will hold the oemof.solph.EnergySystem.

	Type

	oemof.solph.EnergySystem

	
__init__(meta=None, input_data=None, es=None, results=None)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__([meta, input_data, es, results])

	Initialize self.

	add_nodes_to_es(nodes)

	Add nodes to an existing solph.EnergySystem.

	check_input_data()

	Check the input data for NaN values.

	compute([solver, with_duals])

	Create a solph.Model from the input data and optimise it using an external solver.

	create_model()

	Create a solph model from an EnergySystem object.

	create_nodes()

	Creates solph components and buses from the input data and store them in a dictionary with unique IDs as keys.

	dump(filename)

	Store a solved scenario class into the binary pickle format.

	initialise_energy_system()

	Create a solph.EnergySystem and store it in the es attribute.

	read_csv(path)

	Load scenario from a csv-collection.

	read_xlsx(filename)

	Load scenario data from an xlsx file.

	solve(model[, solver, with_duals])

	Solve the solph.Model.

	store_graph(filename, **kwargs)

	Store the EnergySystem graph into a .graphml file.

	table2es()

	Create a populated solph.EnergySystem from the input data.

	to_csv(path)

	Store the input data as a csv-collection.

	to_xlsx(filename)

	Store the input data into an xlsx-file.

deflex.DeflexScenario.read_xlsx

	
DeflexScenario.read_xlsx(filename)

	Load scenario data from an xlsx file. The full path has to be passed.

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat.xlsx")
>>> sc = dflx.DeflexScenario()
>>> len(sc.input_data)
0
>>> sc = sc.read_xlsx(fn)
>>> len(sc.input_data)
11

deflex.DeflexScenario.read_csv

	
DeflexScenario.read_csv(path)

	Load scenario from a csv-collection. The path of the directory has
to be passed.

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.DeflexScenario()
>>> len(sc.input_data)
0
>>> sc = sc.read_csv(fn)
>>> len(sc.input_data)
11

deflex.create_scenario

	
deflex.create_scenario(path, file_type=None)

	Create a deflex scenario object from file.

	Parameters

	
	path (str) – A valid deflex scenario file.

	file_type (str or None) – Type of the input data. Valid values are ‘csv’, ‘xlsx’, None. If the
input is non the path should end on ‘csv’, ‘.xlsx’ to allow
auto-detection.

	Returns

	

	Return type

	deflex.DeflexScenario

Examples

>>> from deflex import fetch_test_files, TEST_PATH
>>> fn = fetch_test_files("de17_heat.xlsx")
>>> s = create_scenario(fn, file_type="xlsx")
>>> type(s)
<class 'deflex.scenario.DeflexScenario'>
>>> int(s.input_data["volatile plants"]["capacity"]["DE01", "wind"])
3815
>>> type(create_scenario(fn))
<class 'deflex.scenario.DeflexScenario'>
>>> create_scenario(fn, file_type="csv"
...) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
 ...
NotADirectoryError: [Errno 20] Not a directory:

deflex.search_input_scenarios

	
deflex.search_input_scenarios(path, csv=True, xlsx=False, exclude=None)

	Search for files with an .xlsx extension or directories ending with ‘_csv’.

By now it is not possible to distinguish between valid deflex scenarios and
other xlsx-files or directories ending with ‘_csv’. Therefore, the given
directory should only contain valid scenarios.

The function will not search recursively.

	Parameters

	
	path (str) – Directory with valid deflex scenarios.

	csv (bool) – Search for csv directories.

	xlsx (bool) – Search for xls files.

	exclude (str) – A string that is not allowed in the filename. Filenames containing this
strings will be excluded.

	Returns

	Scenarios found in the given directory

	Return type

	list

Examples

>>> import shutil
>>> from deflex import fetch_test_files, search_input_scenarios
>>> test_file = fetch_test_files("de02_heat.xlsx")
>>> test_path = os.path.dirname(test_file)
>>> my_csv = search_input_scenarios(test_path)
>>> len(my_csv)
16
>>> os.path.basename(my_csv[0])
'de02_heat_csv'
>>> my_xlsx = search_input_scenarios(test_path, csv=False, xlsx=True)
>>> len(my_xlsx)
17
>>> os.path.basename([e for e in my_xlsx][0])
'de02_heat.xlsx'
>>> len(search_input_scenarios(test_path, xlsx=True))
33
>>> scenario = create_scenario([e for e in my_xlsx][0])
>>> csv_path = os.path.join(test_path, "de02_new_csv")
>>> scenario.to_csv(csv_path)
>>> len(search_input_scenarios(test_path, xlsx=True))
34
>>> len(search_input_scenarios(test_path, xlsx=True, exclude="de02"))
25
>>> len(search_input_scenarios(test_path, xlsx=True, exclude="test"))
34
>>> shutil.rmtree(csv_path) # remove test results, skip this line to go on

deflex.DeflexScenario.to_xlsx

	
DeflexScenario.to_xlsx(filename)

	Store the input data into an xlsx-file.

	filenamestr

	Full path to the filename.

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.DeflexScenario()
>>> # read scenario from xlsx-file
>>> sc = sc.read_csv(fn)
>>> # store scenario as csv-collection.
>>> sc.to_xlsx(fn.replace("_csv", ".xlsx"))

deflex.DeflexScenario.to_csv

	
DeflexScenario.to_csv(path)

	Store the input data as a csv-collection.

	filenamestr

	Full path to the filename.

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat.xlsx")
>>> sc = dflx.DeflexScenario()
>>> # read scenario from xlsx-file
>>> sc = sc.read_xlsx(fn)
>>> # store scenario as csv collection.
>>> sc.to_csv(fn.replace(".xlsx", "_csv"))

deflex.DeflexScenario.dump

	
DeflexScenario.dump(filename)

	Store a solved scenario class into the binary pickle format.

The file will be stored with the suffix .dflx. If the given filename
does not contain the suffix, it will be added to the filename.

It is possible to restore the dump but it is not possible to compute
a restored dump. Unsolved scenarios should be stored in the xlsx or
csv format.

>>> import os
>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.create_scenario(fn, "csv")
>>> sc.results is None
True
>>> sc.compute() # doctest: +ELLIPSIS
Welcome to the CBC MILP ...
>>> fn_dump = fn.replace("_csv", ".dflx")
>>> os.path.basename(fn_dump)
'de02_no-heat.dflx'
>>> sc.dump(fn_dump)
>>> os.path.isfile(fn_dump)
True
>>> sc2 = dflx.restore_scenario(fn_dump)
>>> type(sc2)
<class 'deflex.scenario.DeflexScenario'>
>>> sc2.results.keys()
['Problem', 'Solver', 'Solution', 'Main', 'Param', 'Meta']
>>> os.remove(fn_dump)

deflex.DeflexScenario.store_graph

	
DeflexScenario.store_graph(filename, **kwargs)

	Store the EnergySystem graph into a .graphml file.

The kwargs are passed to the oemof.network function
create_nx_graph() [https://github.com/oemof/oemof.network/blob/dev/src/oemof/network/graph.py#L15].

	Parameters

	filename (str) – Full path of the graphml-file.

Examples

>>> import os
>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.create_scenario(fn, "csv")
>>> sc.table2es()
>>> fn_graph = fn.replace("_csv", ".graphml")
>>> os.path.basename(fn_graph)
'de02_no-heat.graphml'
>>> sc.store_graph(fn_graph)
>>> os.path.isfile(fn_graph)
True
>>> os.remove(fn_graph)

deflex.DeflexScenario.compute

	
DeflexScenario.compute(solver='cbc', with_duals=True, **kwargs)

	Create a solph.Model from the input data and optimise it using an
external solver. Afterwards the results are stored in the results
attribute.

	Parameters

	
	solver (str) – The name of the solver as used in the Pyomo package like cbc, glpk,
gurobi, cplex… (default: cbc).

	with_duals (bool) – Receive the dual variables of all buses in the results (default:
True).

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.create_scenario(fn, "csv")
>>> sc.results is None
True
>>> sc.compute() # doctest: +ELLIPSIS
Welcome to the CBC MILP ...
>>> sc.results.keys()
['Problem', 'Solver', 'Solution', 'Main', 'Param', 'Meta']

deflex.DeflexScenario.check_input_data

	
DeflexScenario.check_input_data()

	Check the input data for NaN values.
If warning is True (default: False) a warning for all tables is raised
that contain NaN values. This is useful if you suspect many NaN values
in your data set, so you get a good overview over all the corrupt
columns. Otherwise an exception is raised on the first occurrence of
NaN values.

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.create_scenario(fn, "csv")
>>> sc.input_data["electricity demand series"].iloc[15] = float("nan")
>>> sc.input_data["volatile series"].iloc[11] = float("nan")
>>> sc.check_input_data() # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
ValueError: NaN values found in the following tables: electricity...

deflex.DeflexScenario.table2es

	
DeflexScenario.table2es()

	Create a populated solph.EnergySystem from the input data.

The EnergySystem object will be stored in the es attribute of the
DeflexScenario.

This method is included in the
compute()
method and is only needed for advanced usage.

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.create_scenario(fn, "csv")
>>> sc.es is None
True
>>> sc.table2es()
>>> type(sc.es)
<class 'oemof.solph.network.energy_system.EnergySystem'>

deflex.DeflexScenario.create_model

	
DeflexScenario.create_model()

	Create a solph model from an EnergySystem object.

This method is included in the compute() method and is only
needed for advanced usage.

	Returns

	

	Return type

	oemof.solph.Model

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.create_scenario(fn, "csv")
>>> sc.table2es()
>>> type(sc.create_model())
<class 'oemof.solph.models.Model'>

deflex.DeflexScenario.create_nodes

	
DeflexScenario.create_nodes()

	Creates solph components and buses from the input data and store them
in a dictionary with unique IDs as keys.

	Returns

	

	Return type

	dict

deflex.DeflexScenario.solve

	
DeflexScenario.solve(model, solver='cbc', with_duals=True, **solver_kwargs)

	Solve the solph.Model. This method is included in the
compute() method and is only
needed for advanced usage.

	Parameters

	
	model (oemof.solph.Model) –

	solver (str) –

	with_duals (bool) –

	Other Parameters

	
	tee (bool) – Set to False to suppress the solver output (default: True).

	logfile (str) – Define the path where to store the log file of the solver.

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat_csv")
>>> sc = dflx.create_scenario(fn, "csv")
>>> sc.table2es()
>>> my_model = sc.create_model()
>>> sc.solve(my_model, with_duals=False) # doctest: +ELLIPSIS
Welcome to the CBC MILP ...
>>> sc.results.keys()
['Problem', 'Solver', 'Solution', 'Main', 'Param', 'Meta']

deflex.DeflexScenario.initialise_energy_system

	
DeflexScenario.initialise_energy_system()

	Create a solph.EnergySystem and store it in the es attribute. The
input_data attribute has to contain the input data to use this method.

	Returns

	

	Return type

	self

deflex.DeflexScenario.add_nodes_to_es

	
DeflexScenario.add_nodes_to_es(nodes)

	Add nodes to an existing solph.EnergySystem. If the EnergySystem does
not exist an Error is raised. This method is included in the
compute() method and is only
needed for advanced usage.

	Parameters

	nodes (dict) – Dictionary with a unique key and values of type oemof.network.Node.

	Returns

	

	Return type

	self

deflex.model_scenario

	
deflex.model_scenario(path=None, file_type=None, dump=True, results=False, solver='cbc')

	Compute a deflex scenario with the full work flow:

	creating a scenario

	loading the input data

	computing the scenario

	storing the results

	Parameters

	
	path (str or None) – File or directory with a valid deflex scenario. If no path is given an
energy system (es) has to be passed.

	file_type (str or None) – Type of the input data. Valid values are ‘csv’, ‘xlsx’, None. If the
input is non the path should end on ‘csv’ or ‘.xlsx’.

	dump (str or bool) – Path to store the dump file. If True the results will be stored along
with the scenarios using the same name and the suffix .dflx. If False
no dump will be stored (default: True).

	results (str or bool) – Path to store the results in an spreadsheet. If True the results will
be stored along with the scenarios using the same name and the suffix
_results.xlsx. If False no results will be stored (default: False).

	solver (str) – The solver to use for the optimisation (default: cbc).

Examples

>>> from deflex import fetch_test_files, TEST_PATH
>>> fn = fetch_test_files("de02_no-heat.xlsx")
>>> r = model_scenario(fn, file_type="xlsx", dump=True
...) # doctest: +ELLIPSIS
Welcome to the CBC MILP ...
>>> os.remove(fn.replace(".xlsx", ".dflx"))

deflex.batch_model_scenario

	
deflex.batch_model_scenario(path, file_type=None, ignore_errors=True, flat_tuple=False, **kwargs)

	Model a single scenario in batch mode. By default errors will be ignored
and returned together with the traceback.

	Parameters

	
	path (str) – A valid deflex scenario.

	file_type (str or None) – Type of the input data. Valid values are ‘csv’, ‘xlsx’, None. If the
input is non the path should end on ‘csv’, ‘.xlsx’.

	ignore_errors (bool) – Set True to stop the script if an error occurs for debugging. By
default errors are ignored and returned.

	flat_tuple (bool) – Return a normal tuple instead of a named tuple. This is needed for
multi-process use. (default: False)

	Other Parameters

	
	dump (str or bool) – Path to store the dump file. If True the results will be stored along
with the scenarios using the same name and the suffix .dflx. If False
no dump will be stored (default: True).

	results (str or bool) – Path to store the results in an spreadsheet. If True the results will
be stored along with the scenarios using the same name and the suffix
_results.xlsx. If False no results will be stored (default: False).

	solver (str) – The solver to use for the optimisation (default: cbc).

	Returns

	

	Return type

	namedtuple

Examples

>>> from deflex import fetch_test_files
>>> fi = fetch_test_files("de02_heat_csv")
>>> r = batch_model_scenario(fi, ignore_errors=False) # doctest: +ELLIPSIS
Welcome to the CBC MILP ...
>>> r.name
'de02_heat_csv'
>>> my_dump_file = r.dump
>>> os.path.basename(my_dump_file)
'de02_heat_csv.dflx'
>>> r.trace
>>> r.return_value.year > 2019
True
>>> f_wrong = os.path.join("wrong_file.xlsx")
>>> r = batch_model_scenario(f_wrong)
>>> r.name
'wrong_file.xlsx'
>>> repr(r.return_value)
"FileNotFoundError(2, 'No such file or directory')"
>>> r.results
>>> r.trace # doctest: +ELLIPSIS
'Traceback (most recent call last):...
>>> os.remove(my_dump_file)

deflex.model_multi_scenarios

	
deflex.model_multi_scenarios(scenarios, cpu_fraction=0.2, log_file=None, results=False)

	Model multi scenarios in parallel. Keep in mind that the memory usage
is the critical resource for large models. So start with a low
cpu_fraction to avoid memory errors.

	Parameters

	
	scenarios (iterable) – Multiple scenarios to be modelled in parallel.

	cpu_fraction (float) – Fraction of available cpu cores to use for the parallel modelling.
A resulting dezimal number of cores will be rounded up to an integer.

	log_file (str) – Filename to store the log file.

	results (bool) – Store an spreadsheet results file (default: False).

Examples

>>> from deflex import fetch_test_files, TEST_PATH
>>> fn1 = fetch_test_files("de03_fictive_csv")
>>> fn2 = fetch_test_files("de03_fictive_broken.xlsx")
>>> my_log_file = os.path.join(TEST_PATH, "my_log_file.csv")
>>> my_scenarios = [fn1, fn2]
>>> model_multi_scenarios(my_scenarios, log_file=my_log_file)
>>> my_log = pd.read_csv(my_log_file, index_col=[0])
>>> good = my_log.loc["de03_fictive_csv"]
>>> rv = good["return_value"]
>>> datetime.strptime(rv, "%Y-%m-%d %H:%M:%S.%f").year > 2019
True
>>> good["trace"]
nan
>>> os.path.basename(good["dump"])
'de03_fictive_csv.dflx'
>>> good["results"]
False
>>> broken = my_log.loc["de03_fictive_broken.xlsx"]
>>> broken["return_value"].replace("'", "") # doctest: +ELLIPSIS
'ValueError(Missing time series for geothermal (capacity: 12.56) in DE02...
>>> broken["trace"] # doctest: +ELLIPSIS
'Traceback (most recent call last)...
>>> broken["dump"]
nan
>>> os.remove(my_log_file)
>>> os.remove(good["dump"])

deflex.console_scripts.main

	
deflex.console_scripts.main()

	deflex-compute [-h] [–version] [–results [RESULTS]]
[–dump [DUMP]] [–solver [SOLVER]] path

Computing a deflex scenario. By default the name of the result file is
derived from the name of the input file by adding ‘_results but it is
possible to define a custom path. The results will be of the same
file format as the input scenario.

Optionally a dump-file can be stored.
If no path is given the path is derived from the path of the input
scenario. The suffix of the dump is ‘.dflx’. The dump can be processed
using deflex_result.

Positional Arguments

path Input file or directory.

Optional Arguments

	-h, --help

	show this help message and exit

	--version

	show program’s version number and exit

	--results <RESULTS>

	The name of the results file or directory or False to
get no result file. By default the path is derived
from scenario path.

	--dump <DUMP>

	The name of the dump file. Leave empty for the
default file name

	--solver <SOLVER>

	Solver to use for computing (default cbc)

deflex.console_scripts.result

	
deflex.console_scripts.result()

	deflex-results [-h] [–version] [–filetype [FILETYPE]] function in_path
out_path

Processing the results from a computed deflex dump file. The following
functions are available:

	calculate_key_values calculate_key_values()

	something

See the documentation for more details.

Positional Arguments

function Post-processing function to use.
in_path Input file or directory.
out_path Output file or directory.

Optional Arguments

	-h, --help

	show this help message and exit

	--version

	show program’s version number and exit

	--filetype <FILETYPE>

	The file_type of the output file xlsx or csv. By
default the suffix of the output file is used, if
possible.

deflex.search_dumped_scenarios

	
deflex.search_dumped_scenarios(path, extension='dflx', **parameter_filter)

	Filter results by extension and meta data.

The function will search the $HOME folder recursively for files with the
‘.dflx’ extension. Afterwards all files will filtered by the meta data.

If there is an info table in your input data, the keys and values can be
used to filter the values. For example different region sets are defined
as maps with de21, de22 and de17 and different years were modelled.
Futhermore some are modelled with the heating sector (heat: True) and some
not (heat: False). See the example below on how to search for these
scenarios.

	Parameters

	
	path (str) – Start folder from where to search recursively.

	extension (str) – Extension of the results files (default: “.dflx”)

	**parameter_filter – Set filter always with lists e.g. map=[“de21”] or map=[“de21”, “de22”].
The values in the list have to be strings. Two filters will be
connected with ‘AND’, the values within one filter with OR.
The filters year=[“2014”], map=[“de21”, “de22”] will find all scenarios
with: year==2014 and (map==”de21” or map==”de22”)

Examples

>>> from deflex import TEST_PATH
>>> from deflex import fetch_test_files
>>> my_file_name = fetch_test_files("de17_heat.dflx")
>>> res = search_dumped_scenarios(path=TEST_PATH, map=["de17"])
>>> len(res)
2
>>> sorted(res)[0].split(os.sep)[-1]
'de17_heat.dflx'
>>> res = search_dumped_scenarios(path=TEST_PATH, map=["de17", "de21"])
>>> len(res)
6
>>> res = search_dumped_scenarios(
... path=TEST_PATH, map=["de17", "de21"], heat=["True"])
>>> len(res)
3
>>> sorted(res)[0].split(os.sep)[-1]
'de17_heat.dflx'

deflex.restore_scenario

	
deflex.restore_scenario(filename, scenario_class=<class 'deflex.scenario.DeflexScenario'>)

	Restore a full Scenario from a dump file (.dflx).

If only the results are needed use
restore_results() instead.
By default a DeflexScenario is created but a different Scenario class can
be passed The Scenario has to be equal to the dumped Scenario otherwise the
restore will fail.

	Parameters

	
	filename (str) – The path to the dumped file (.dflx).

	scenario_class (class) – A child of the deflex.Scenario class or the Scenario class itself.

	Returns

	

	Return type

	deflex.Scenario

deflex.restore_results

	
deflex.restore_results(file_names, scenario_class=<class 'deflex.scenario.DeflexScenario'>)

	Restore only the result dictionary from a dumped scenario or a list of
dumped scenarios. The results will be a deflex result dictionary with the
following keys:

	main – Results of all variables

	param – Input parameter

	meta – Meta information and tags of the scenario

	problem – Information about the linear problem such as lower bound,
upper bound etc.

	solver – Solver results

	solution – Information about the found solution and the objective value

	Parameters

	
	file_names (list or string) – All file names (full path) that should be loaded.

	scenario_class (class) – A child of the deflex.Scenario class or the Scenario class itself.

	Returns

	
	A list of results dictionaries or a single dictionary if one file name is

	given (list or dict)

Examples

>>> from deflex import fetch_test_files
>>> fn1 = fetch_test_files("de21_no-heat_transmission.dflx")
>>> fn2 = fetch_test_files("de02_no-heat.dflx")
>>> sorted(restore_results(fn1).keys())
['Input data', 'Main', 'Meta', 'Param', 'Problem', 'Solution', 'Solver']
>>> sorted(restore_results([fn1, fn2])[0].keys())
['Input data', 'Main', 'Meta', 'Param', 'Problem', 'Solution', 'Solver']

deflex.postprocessing.graph.Edge

	
class deflex.postprocessing.graph.Edge(**kwargs)

	An edge of a DeflexGraph

All attributes can be defined using keyword arguments.

	
nodes

	The node where the edge comes from and the node where it goes to.

	Type

	tuple

	
label

	A string representation of the nodes attribute.

	Type

	str

	
sequence

	A time series of the flow variable of the edge.

	Type

	iterable

	
weight

	The sum of the sequence attribute.

	Type

	float

	
color

	A color string for plots/drawings of the graph.

	Type

	str

	
__init__(**kwargs)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(**kwargs)

	Initialize self.

deflex.DeflexGraph

	
class deflex.DeflexGraph(results, **kwargs)

	The deflex model graph with a networkx representation.

The sum of the variables are addedcan be used as weight

	Parameters

	results (dict) – Deflex results dictionary.

	Other Parameters

	
	default_node_color (str) – The default color as a dictionary with the keys “fg” for the
foreground color (font color) and “bg” for the background color
(fill color). The color has to be a hexadecimal string. The default
color is used if no other color is set.
(default: {“bg”: “#6a6a72”, “fg”: “#000000”}”)

	default_edge_color (str) – The default edge color as a hexadecimal string. The default color
is used if no other color is set.
(default: “#000000””)

	
nodes

	All nodes of the deflex energy system graph.

	Type

	list

	
edges

	All edges of the deflex energy system graph.

	Type

	list

	
default_node_color

	The default color for nodes with the keys bg for the background
color and fg for text color (foreground).

	Type

	dict

	
default_edge_color

	The default color for edges with the keys bg for the background
color and fg for text color (foreground).

	Type

	dict

Examples

>>> import os
>>> from deflex import fetch_test_files
>>> from deflex import restore_results
>>> from deflex import DeflexGraph
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> my_results = restore_results(fn)
>>> dflx_graph = DeflexGraph(my_results)
>>> len(dflx_graph.nodes)
226
>>> sorted(dflx_graph.nodes)[5].label
Label(cat='chp plant', tag='other', subtag='other', region='DE01')
>>> len(dflx_graph.edges)
323
>>> dflx_graph.edges[5].label
'chp-plant_lignite_lignite_DE01 -> heat_district_all_DE01'
>>> type(dflx_graph.edges[5])
<class 'deflex.postprocessing.graph.Edge'>
>>> dflx_graph.edges[5].weight
136524.0
>>> nx_graph = dflx_graph.nxgraph()
>>> nx.number_of_nodes(nx_graph)
226
>>> nx.number_weakly_connected_components(nx_graph)
1

	
__init__(results, **kwargs)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(results, **kwargs)

	Initialize self.

	color_edges_by_weight([cmap, max_weight])

	Color all edges by their weight using a matplotlib color map (cmap).

	color_nodes_by_substring(colors)

	Color all nodes in a specific color according to a given substring.

	color_nodes_by_type(colors[, use_name])

	Color all nodes in a specific color according to their class.

	group_nodes_by_type([use_name])

	Group all nodes by types returning a dictionary with the types or the name of the types as keys and the list of nodes as value.

	nxgraph(**kwargs)

	Get a networkx.DiGraph() from the deflex results.

	write(filename, **kwargs)

	Write the graph into a .graphml file.

deflex.DeflexGraph.nxgraph

	
DeflexGraph.nxgraph(**kwargs)

	Get a networkx.DiGraph() from the deflex results.

Some labels will be added to the edges and nodes.

Node
* label: label of the Node as string
* bg_color: background color of the node for plots or exports
* fg_color: text color of the node for plots or exports
* type: name of the node class

Edge
* weight: sum of the flow variable
* color: color of the edge depending of the weight

	Other Parameters

	weight_exponent (int) – Shift the decimal point:
[image: weight = weight\cdot10^{weight_exponent}]

Examples

>>> import os
>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> dflx_graph = dflx.DeflexGraph(my_results)
>>> type(dflx_graph.nxgraph(weight_exponent=-3))
<class 'networkx.classes.digraph.DiGraph'>
>>> edges_data = dflx_graph.nxgraph().edges.data()
>>> wind2bus = [e[2] for e in edges_data if
... e[0].subtag == "wind" and
... e[0].region == "DE01"
...][0]
>>> wind2bus["label"]
'source_volatile_wind_DE01 -> electricity_all_all_DE01'
>>> wind2bus["weigth"], wind2bus["color"]
('337.0', '#000000')
>>> dflx_graph.color_edges_by_weight()
>>> edges_data = dflx_graph.nxgraph(weight_exponent=-3).edges.data()
>>> wind2bus = [e[2] for e in edges_data if
... e[0].subtag == "wind" and
... e[0].region == "DE01"
...][0]
>>> wind2bus["weigth"], wind2bus["color"]
('337.0', '#09f6ff')
>>> nodes_data = dflx_graph.nxgraph().nodes.data()
>>> wind_node = [n[1] for n in nodes_data if
... n[0].subtag == "wind" and
... n[0].region == "DE01"
...][0]
>>> wind_node["label"]
'source_volatile_wind_DE01'
>>> wind_node['bg_color']
'#6a6a72'
>>> wind_node["type"]
'Source'
>>> my_colors = {"Source": {"bg": "#996967", "fg": "#000000"}}
>>> dflx_graph.color_nodes_by_type(my_colors)
>>> nodes_data = dflx_graph.nxgraph().nodes.data()
>>> wind_node = [n[1] for n in nodes_data if
... n[0].subtag == "wind" and
... n[0].region == "DE01"
...][0]
>>> wind_node['bg_color']
'#996967'

deflex.DeflexGraph.write

	
DeflexGraph.write(filename, **kwargs)

	Write the graph into a .graphml file.

	Parameters

	filename (str) – Path of the output file e.g. /my/special/path/mygraph.graphml

	Other Parameters

	weight_exponent (int) – Shift the decimal point:
[image: weight = weight\cdot10^{weight_exponent}]

Examples

>>> import os
>>> from deflex import fetch_test_files
>>> from deflex import restore_results
>>> from deflex import DeflexGraph
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> my_results = restore_results(fn)
>>> dflx_graph = DeflexGraph(my_results)
>>> fn_out = fn.replace(".dflx", "_graph.graphml")
>>> dflx_graph.write(fn_out, weight_exponent=-3)
>>> os.stat(fn_out).st_size > 0
True
>>> os.remove(fn_out)

deflex.DeflexGraph.color_edges_by_weight

	
DeflexGraph.color_edges_by_weight(cmap='cool', max_weight=None)

	Color all edges by their weight using a matplotlib color map (cmap). If
no maximum weight is give the highest weight is used.

	Parameters

	
	cmap (str) – Name of the matplotlib color map.

	max_weight (numeric) – The maximum for the normalisation of the weights. All number above
the max_weight will get the color of the maximum. If no value is
given the maximum weight of all edges will used.

Examples

>>> from deflex import fetch_test_files
>>> from deflex import restore_results
>>> from deflex import DeflexGraph
>>> from matplotlib.cm import get_cmap
>>>
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> my_results = restore_results(fn)
>>> dflx_graph = DeflexGraph(my_results)
>>> dflx_graph.color_edges_by_weight(cmap="rainbow", max_weight=80)
>>> edges = dflx_graph.edges
>>> bus = [edg for edg in edges if "wind" in edg.nodes[0].label][0]
>>> getattr(bus, "color")
'#ff0000'
>>> w = bus.weight
>>> int(w)
336973
>>> rgb2hex(get_cmap("rainbow")(w))
'#ff0000'

deflex.DeflexGraph.color_nodes_by_type

	
DeflexGraph.color_nodes_by_type(colors, use_name=True)

	Color all nodes in a specific color according to their class.

Use the group_nodes_by_type() method to get all existing
types. Now a color can be assigned to every type using a color
dictionary. If no color is defined for an existing class the default
color is used. By default the name of each class is used.

	Parameters

	colors (dict) – The dictionary needs to have the class (name of class) as keys and
a color dictionary as value. The color dictionary has two keys,
“fg” for the foreground color (font color) and “bg” for the
background color (fill color) and the color as value. The color has
to be in the hexadecimal style.

	use_namebool

	Use the name of the class instead of the class as key. If the class
is used, the classes also have to be used for the colors as key.

Examples

>>> from deflex import fetch_test_files
>>> from deflex import restore_results
>>> from deflex import DeflexGraph
>>> from oemof import solph
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> my_results = restore_results(fn)
>>> dflx_graph = DeflexGraph(my_results)
>>> my_colors = {
... "Bus": {"bg": "#00ff11", "fg": "#000000"},
... "GenericStorage": {"bg": "#efb507", "fg": "#000000"},
... "Transformer": {"bg": "#94221d", "fg": "#000000"},
... "Source": {"bg": "#996967", "fg": "#000000"},
... "Sink": {"bg": "#31306e", "fg": "#ffffff"},
... }
>>> dflx_graph.color_nodes_by_type(my_colors)
>>> bus = [a for a in dflx_graph.nodes if isinstance(a, solph.Bus)][0]
>>> getattr(bus, "bgcolor")
'#00ff11'
>>> sorted(set([a.bgcolor for a in dflx_graph.nodes]))
['#00ff11', '#31306e', '#94221d', '#996967', '#efb507']
>>> sorted(set([a.fgcolor for a in dflx_graph.nodes]))
['#000000', '#ffffff']
>>> my_colors = {
... solph.Bus: {"bg": "#00ff11", "fg": "#000000"},
... "GenericStorage": {"bg": "#efb507", "fg": "#000000"},
... "Transformer": {"bg": "#94221d", "fg": "#000000"},
... solph.Source: {"bg": "#996967", "fg": "#000000"},
... solph.Sink: {"bg": "#31306e", "fg": "#ffffff"},
... }
>>> dflx_graph.color_nodes_by_type(my_colors, use_name=False)
>>> bus = [a for a in dflx_graph.nodes if isinstance(a, solph.Bus)][0]
>>> getattr(bus, "bgcolor")
'#00ff11'
>>> sorted(set([a.bgcolor for a in dflx_graph.nodes]))
['#00ff11', '#31306e', '#6a6a72', '#996967']
>>> sorted(set([a.fgcolor for a in dflx_graph.nodes]))
['#000000', '#ffffff']

deflex.DeflexGraph.color_nodes_by_substring

	
DeflexGraph.color_nodes_by_substring(colors)

	Color all nodes in a specific color according to a given substring. A
color can be assigned to every substring using a dictionary with the
substrings as key an the color dictionary as value. The color
dictionary needs to have the keys “fg” for the foreground color (font
color) and “bg” for the background color (fill color). The color has to
be in the hexadecimal style. Each substring key will be compared with
the label of the node as string. If no substring match
the default node color is used. If more than one substring is within
a label the last match will overwrite the previous matches.

	Parameters

	colors (dict) – The dictionary needs to have the substring as keys and a color
dictionary as value. The color dictionary has two keys, “fg” for
the foreground color (font color) and “bg” for the background color
(fill color) and the color as value. The color has to be in the
hexadecimal style.

Examples

>>> from deflex import fetch_test_files
>>> from deflex import restore_results
>>> from deflex import DeflexGraph
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> my_results = restore_results(fn)
>>> dflx_graph = DeflexGraph(my_results)
>>> my_colors = {
... "H2": {"bg": "#00ff11", "fg": "#000000"},
... "electricity": {"bg": "#efb507", "fg": "#000000"},
... "bioenergy": {"bg": "#063313", "fg": "#ffffff"},
... }
>>> dflx_graph.color_nodes_by_substring(my_colors)
>>> mynode = [n for n in dflx_graph.nodes if "bioenergy" in n.label][0]
>>> getattr(mynode, "bgcolor")
'#063313'
>>> sorted(set([n.bgcolor for n in dflx_graph.nodes]))
['#00ff11', '#063313', '#6a6a72', '#efb507']
>>> sorted(set([n.fgcolor for n in dflx_graph.nodes]))
['#000000', '#ffffff']

deflex.DeflexGraph.group_nodes_by_type

	
DeflexGraph.group_nodes_by_type(use_name=False)

	Group all nodes by types returning a dictionary with the types or the
name of the types as keys and the list of nodes as value.

The keys of the returning dictionary are the classes (or name of the
classes) the values are lists with nodes of the corresponding class.

	Parameters

	use_name (bool) – Use the name of the class instead of the class as key.

	Returns

	All nodes sorted by their type

	Return type

	dict

Examples

>>> from deflex import fetch_test_files
>>> from deflex import restore_results
>>> from deflex import DeflexGraph
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> my_results = restore_results(fn)
>>> dflx_graph = DeflexGraph(my_results)
>>> sorted(dflx_graph.group_nodes_by_type(use_name=True))
['Bus', 'GenericStorage', 'Sink', 'Source', 'Transformer']
>>> list(dflx_graph.group_nodes_by_type(use_name=False))[0].__mro__[-2]
<class 'oemof.network.network.Node'>
>>> sources = dflx_graph.group_nodes_by_type(use_name=True)["Source"]
>>> sorted(sources)[-1].label
Label(cat='source', tag='volatile', subtag='wind', region='DE03')

deflex.Cycles

	
class deflex.Cycles(results, storages=True, lines=True, digits=10)

	Detect all simple cycles in the directed graph.

Furthermore, get the flows of each cycle as pandas.DataFrame. For a large
number of cycles getting the values may take a while so check the
simple_cycles attribute first and consider setting storages and lines
to False.

Cycles are a list of nodes with a flow between one node and the following
node in the list and a flow from the last node of the lsit to the first
node. Therefore, the number of nodes equals the number of flows.

	Parameters

	
	results (dict) – A valid deflex results dictionary.

	storages (bool) – Storages are always cycles and you may want to exclude them from the
results setting storages=False. Nevertheless, sometimes storages are
charged and discharged in one time step, which indicates a modelling
problem. To detect such behaviour storages should be True.
(default: True)

	lines (bool) – Transmission lines will create multiple cycles especially in models
with a high number of regions and line. Setting lines to False will
exclude cycles that are caused by lines. Cycles with e.g. an
electrolyses in one region and a H2 power plant in another will cause
a hydrogen-electricity cycle. In this cycle is a transmission line
include but this cycle will not(!) be excluded if lines=False.
(default: True)

	digits (int) – To detect used or critical cycles the flows are rounded to avoid a
detection for very small flow values. Use digits to define the number
of digits to be rounded. A high number will make the detection very
sensitive. (default: 10)

	
name

	Name of the cycle object.

	Type

	str

	
simple_cycles

	A list of all cycles. Each cycle is a list of nodes.

	Type

	list of lists

Examples

>>> from deflex import restore_results, fetch_test_files
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> c = Cycles(restore_results(fn), storages=True, lines=True)
>>> len(list(c.simple_cycles))
9
>>> c = Cycles(restore_results(fn), storages=False, lines=True)
>>> len(list(c.simple_cycles))
7
>>> c = Cycles(restore_results(fn), storages=False, lines=False)
>>> len(list(c.simple_cycles))
2

	
__init__(results, storages=True, lines=True, digits=10)

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(results[, storages, lines, digits])

	Initialize self.

	details()

	Print out a more detailed overview over the existing cycles.

	get_suspicious_time_steps()

	Detect the time steps of a cycle in which all flows are non-zero.

	print()

	Print an overview of the cycles.

Attributes

	cycles

	Get all cycles of the model.

	suspicious_cycles

	Get all cycles from a list of cycles that are suspicious.

	used_cycles

	Get all cycles from a list of cycles that are used.

deflex.Cycles.cycles

	
Cycles.cycles

	Get all cycles of the model.

Cycles are a list of nodes with a flow between one node and the
following node in the list and a flow from the last node of the lsit
to the first node. Therefore, the number of nodes equals the number of
flows.

	Returns

	

	Return type

	list of pandas.DataFrame

Examples

>>> from deflex import restore_results, fetch_test_files, Cycles
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> cy = Cycles(restore_results(fn), storages=True, lines=True)
>>> len(cy.cycles)
9
>>> len(cy.used_cycles)
2
>>> type(cy.used_cycles[0])
<class 'pandas.core.frame.DataFrame'>

deflex.Cycles.used_cycles

	
Cycles.used_cycles

	Get all cycles from a list of cycles that are used.

Cycles are not in use if one flow of the cycle is zero for all time
steps.

	Returns

	

	Return type

	list of pandas.DataFrame

Examples

>>> from deflex import restore_results, fetch_test_files, Cycles
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> cy = Cycles(restore_results(fn), storages=True, lines=True)
>>> len(cy.cycles)
9
>>> len(cy.used_cycles)
2
>>> type(cy.used_cycles[0])
<class 'pandas.core.frame.DataFrame'>

deflex.Cycles.suspicious_cycles

	
Cycles.suspicious_cycles

	Get all cycles from a list of cycles that are suspicious.

Suspicious cycles are cycles that have a non-zero value in all flows
within one time step.

One can detect all cycles and drop the unsuspicious cycles to get only
the suspicious ones. A suspicious cycle indicates a problem in the
model design, so one should have a closer look at all these cycles. A
typical example for such cycles are storages that a charged and
discharged in one time step. In some rare cases suspicious cycles are
fine.

Examples

>>> from deflex import restore_results, fetch_test_files, Cycles
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> cy = Cycles(restore_results(fn), storages=True, lines=True)
>>> len(list(cy.simple_cycles))
9
>>> len(cy.suspicious_cycles)
0

deflex.Cycles.get_suspicious_time_steps

	
Cycles.get_suspicious_time_steps()

	Detect the time steps of a cycle in which all flows are non-zero.

	Returns

	One table for each cycle with all suspicious rows

	Return type

	list

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_suspicious_modelling.dflx")
>>> my_results = dflx.restore_results(fn)
>>> c = Cycles(my_results)
>>> len(list(c.simple_cycles))
7
>>> len(c.used_cycles)
1
>>> len(c.suspicious_cycles)
1
>>> c.get_suspicious_time_steps()[0].iloc[5]
0_from_storage_electricity_battery_DE01 317596.81
1_from_electricity_all_all_DE01 289581.37
Name: 2022-01-01 05:00:00, dtype: float64

deflex.Cycles.print

	
Cycles.print()

	Print an overview of the cycles.

Examples

>>> from deflex import restore_results, fetch_test_files, Cycles
>>> fn = fetch_test_files("de03_fictive.dflx")
>>> cy = Cycles(restore_results(fn), storages=True, lines=True)
>>> cy.print()
*** Cycle object of scenario: de03_fictive_test ***
<BLANKLINE>
Number of cycles: 9
Number of used cycles: 2
Number of critical cycles: 0
<BLANKLINE>

deflex.Cycles.details

	
Cycles.details()

	Print out a more detailed overview over the existing cycles.

deflex.get_all_results

	
deflex.get_all_results(results)

	Get all results from a computed deflex scenario.

The results will be returned as a dictionary of pandas.DataFrame that can
be stored in the xlsx or csv format using dict2file.
This function can be used to transfer the results to another programming
language or an external tool.

	Parameters

	results (dict) – A valid deflex results dictionary.

	Returns

	

	Return type

	dict

Examples

>>> import os
>>> import shutil
>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> all_results = get_all_results(my_results)
>>> sorted(list(all_results.keys()))[:4]
['commodity', 'components', 'electricity', 'heat_decentralised']
>>> sorted(list(all_results.keys()))[-5:]
['heat_decentralised', 'heat_district', 'meta', 'mobility', 'solver']
>>> fn_out = fn.replace(".dflx", "_all_results.csv")
>>> dflx.dict2file(all_results, fn_out, "csv", drop_empty_columns=True)
>>> my_bool = []
>>> for key in all_results.keys():
... fn_test = os.path.join(fn_out, key + ".csv")
... my_bool.append(os.path.isfile(fn_test))
>>> my_bool
[True, True, True, True, True, True, True, True]
>>> shutil.rmtree(fn_out)

deflex.nodes2table

	
deflex.nodes2table(results, no_sums=False)

	Get a table with all nodes as a MultiIndex with the sum of their in an out
flows.

The index contains the following levels: class, category, tag, subtag,
region

The sums can be found in the columns “in” and “out”.

	Parameters

	
	results (dict) – Deflex results dictionary.

	no_sums (bool) – Set to False to get an empty DataFrame with no sums (default: True)

	Returns

	Table with all nodes and sums

	Return type

	pandas.DataFrame

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> all_nodes = nodes2table(my_results)
>>> len(all_nodes)
226
>>> all_nodes.to_csv("your/path/file.csv") # doctest: +SKIP

deflex.solver_results2series

	
deflex.solver_results2series(results)

	Get the meta results from the solver.

The keys in the first index level are:

	Problem

	Solution

	Solver

	Solver Black box

	Solver Branch and bound

	Parameters

	results (dict) – A valid deflex results dictionary.

	Returns

	

	Return type

	pandas.Series

Example

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_heat.dflx")
>>> my_results = dflx.restore_results(fn)
>>> slvr = solver_results2series(my_results)
>>> list(slvr.index.get_level_values(0).unique())[:4]
['Problem', 'Solution', 'Solver', 'Solver Black box']
>>> round(slvr["Solver", "Time"],5)
0.07627
>>> int(slvr["Solution", "Objective"])
7516285616

deflex.fetch_dual_results

	
deflex.fetch_dual_results(results, bus=None, exclude_commodities=True)

	Collect all the results of the dual variables.

A bus can be passed to get only the dual variables of this specific bus,
otherwise the results of the dual variables of all buses are collected. The
variables of the commodity buses can be excluded using the
exclude_commodities parameter.

	Parameters

	
	results (dict) – A valid deflex results dictionary.

	bus (oemof.network.Bus) – An existing Bus of the deflex model results.

	exclude_commodities (bool) – Exclude the results of the commodity buses.

	Returns

	

	Return type

	pandas.Series

deflex.meta_results2series

	
deflex.meta_results2series(results)

	Get meta results as a pandas.Series

deflex.get_time_index

	
deflex.get_time_index(results)

	Get the time index of the model.

deflex.calculate_key_values

	
deflex.calculate_key_values(results, ignore_chp=True)

	Get time series of typical key values.

	marginal costs

	highest emission

	lowest emission

	marginal costs power plant

	emission of marginal costs power plant

	Parameters

	
	results (dict) – Deflex results dictionary.

	ignore_chp (bool) – Set False to include the chp-plants (default: True).

	Returns

	

	Return type

	pandas.DataFrame

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> df = calculate_key_values(my_results, ignore_chp=False)
>>> list(df.columns)[:3]
['marginal costs', 'highest emission', 'lowest emission']
>>> row = df.iloc[24]
>>> row.pop("marginal costs power plant").label
Label(cat='chp plant', tag='bioenergy', subtag='bioenergy', region='DE01')
>>> row
marginal costs 47.573824
highest emission 1.01
lowest emission 0.0
emission of marginal cost power plant 0.016992
Name: 2022-01-02 00:00:00, dtype: object
>>> min_mc = df["marginal costs"].min()
>>> max_mc = df["marginal costs"].max()
>>> print("{0} - {1}".format(round(min_mc, 2), round(max_mc, 2)))
47.57 - 65.35
>>> df = calculate_key_values(my_results, ignore_chp=True)
>>> row = df.iloc[45]
>>> str(row.pop("marginal costs power plant").label)
'power-plant_natural-gas_06_natural-gas_DE01'
>>> row
marginal costs 46.230384
highest emission 1.299035
lowest emission 0.0
emission of marginal cost power plant 0.335559
Name: 2022-01-02 21:00:00, dtype: object
>>> min_mc = df["marginal costs"].min()
>>> max_mc = df["marginal costs"].max()
>>> print("{0} - {1}".format(round(min_mc, 2), round(max_mc, 2)))
29.97 - 47.58

deflex.group_buses

	
deflex.group_buses(buses, fields)

	Group buses by parts of the label.

	Parameters

	
	buses (list) – Buses to group.

	fields (list) – Fields of the label to group the buses. Valid labels are cat, tag,
subtag, region.

	Returns

	Grouped buses

	Return type

	dict

Examples

>>> import deflex as dflx
>>> from oemof.network.network import Bus
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> mybuses = set([r[0] for r in my_results["main"].keys()
... if isinstance(r[0], Bus)])
>>> sorted(dflx.group_buses(mybuses, ["cat", "tag", "subtag"]).keys())[:2]
[('commodity', 'all', 'H2'), ('commodity', 'all', 'bioenergy')]
>>> sorted(dflx.group_buses(mybuses, ["cat"]).keys())[:4]
[('commodity',), ('electricity',), ('heat',), ('mobility',)]
>>> c_buses = dflx.group_buses(mybuses, ["cat"])[('commodity',)]
>>> sorted(c_buses)[0].label
Label(cat='commodity', tag='all', subtag='H2', region='DE')
>>> len(c_buses)
10
>>> for bu in sorted(c_buses)[:3]:
... print(repr(bu.label))
Label(cat='commodity', tag='all', subtag='H2', region='DE')
Label(cat='commodity', tag='all', subtag='bioenergy', region='DE01')
Label(cat='commodity', tag='all', subtag='bioenergy', region='DE02')

deflex.fetch_converter_parameters

	
deflex.fetch_converter_parameters(results, transformer)

	Fetch relevant parameters of every Transformer of the energy system.

	Returns

	

	Return type

	pandas.DataFrame

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> power_plants = [
... bk[1] for bk in my_results["main"].keys()
... if bk[1] is not None
... and bk[1].label.subtag == "natural gas"
... and isinstance(bk[1], solph.Transformer)
...]
>>> table = fetch_converter_parameters(my_results, power_plants)
>>> power_plant = table.iloc[5].dropna()
>>> power_plant.name = power_plant.pop("label_str")
>>> power_plant
allocation method electricity
category power plant
efficiency, electricity 0.311
emission, fuel 0.201
fuel natural gas, DE
specific_costs_electricity 89.041801
specific_emission_electricity 0.646302
variable costs, fuel 27.692
Name: power-plant_natural-gas_031_natural-gas_DE01, dtype: object
>>> power_plant = table.iloc[0].dropna()
>>> power_plant.name = power_plant.pop("label_str")
>>> power_plant
allocation method finnish
category chp plant
efficiency, electricity 0.25
efficiency, heat 0.41
emission, fuel 0.201
fuel natural gas, DE
specific_costs_electricity 57.96
specific_costs_heat 32.2
specific_emission_electricity 0.420698
specific_emission_heat 0.233721
variable costs, fuel 27.692
Name: chp-plant_natural-gas_natural-gas_DE01, dtype: object

deflex.fetch_attributes_of_commodity_sources

	
deflex.fetch_attributes_of_commodity_sources(results)

	Get the attributes of the commodity sources.

Transformers like power plants are connected to commodity buses. This
function can be used to get specific emission or the variable costs of the
connected commodity source. Use the to_node column to find the data row
of the commodity Bus of the Transformer.

	Parameters

	results (dict) – Deflex results dictionary.

	Returns

	The attributes of all commodities

	Return type

	pandas.DataFrame

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> cdf = dflx.fetch_attributes_of_commodity_sources(my_results)
>>> hard_coal = cdf.loc["hard coal", "DE"]
>>> hard_coal.pop("from_node").label
Label(cat='source', tag='commodity', subtag='hard coal', region='DE')
>>> hard_coal.pop("to_node").label
Label(cat='commodity', tag='all', subtag='hard coal', region='DE')
>>> hard_coal
emission 0.337
nominal_value NaN
summed_max NaN
max 1.0
min 0.0
negative_gradient_costs 0.0
positive_gradient_costs 0.0
variable_costs 19.944
Name: (hard coal, DE), dtype: object
>>> flow_to_power_plant = [
... bk for bk in my_results["main"].keys()
... if bk[1] is not None
... and bk[1].label.cat == "power plant"
... and bk[1].label.subtag == "natural gas"
...][0]
>>> float(cdf.loc[cdf.to_node == flow_to_power_plant[0]].emission)
0.201

deflex.get_combined_bus_balance

	
deflex.get_combined_bus_balance(results, cat=None, tag=None, subtag=None, region=None)

	Combine different buses of the same type.

The combined buses can be restricted by the label fields (cat, tag, subtag,
region). Only buses with the same label fields will be combined.

	Parameters

	
	results (dict) – Deflex results dictionary.

	cat (str) – Category of the buses.

	tag (str) – Tag of the buses.

	subtag (str) – Subtag of the buses.

	region (str) – Region of the buses

	Returns

	

	Return type

	pandas.DataFrame

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> get_combined_bus_balance(my_results, cat="electricity")["out"].columns
MultiIndex([('decentralised heat', 'heat pump', 'heat pump', 'DE02'),
 ('electricity demand', 'electricity', 'all', 'DE01'),
 ('electricity demand', 'electricity', 'all', 'DE02'),
 ('excess', 'electricity', 'all', 'DE01'),
 ('excess', 'electricity', 'all', 'DE02'),
 ('excess', 'electricity', 'all', 'DE03'),
 ('fuel converter', 'electricity', 'electricity', 'DE01'),
 ('fuel converter', 'electricity', 'electricity', 'DE02'),
 ('line', 'electricity', 'DE01', 'DE02'),
 ('line', 'electricity', 'DE01', 'DE03'),
 ('line', 'electricity', 'DE02', 'DE01'),
 ('line', 'electricity', 'DE02', 'DE03'),
 ('line', 'electricity', 'DE03', 'DE01'),
 ('line', 'electricity', 'DE03', 'DE02'),
 ('other converter', 'Electrolysis', 'electricity', 'DE'),
 ('storage', 'electricity', 'battery', 'DE01'),
 ('storage', 'electricity', 'phes', 'DE01')],
)
>>> get_combined_bus_balance(
... my_results, cat="electricity", region="DE03")["out"].columns
MultiIndex([('excess', 'electricity', 'all', 'DE03'),
 ('line', 'electricity', 'DE03', 'DE01'),
 ('line', 'electricity', 'DE03', 'DE02')],
)

deflex.get_converter_balance

	
deflex.get_converter_balance(results, cat=None, tag=None, subtag=None, region=None)

	Get the balance around the converters of the system.

The converters can be restricted by the label fields (cat, tag, subtag,
region). Only converters with the same label fields will be shown.

	Parameters

	
	results (dict) – Deflex results dictionary.

	cat (str) – Category of the buses.

	tag (str) – Tag of the buses.

	subtag (str) – Subtag of the buses.

	region (str) – Region of the buses

	Returns

	

	Return type

	pandas.DataFrame

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de03_fictive.dflx")
>>> my_results = dflx.restore_results(fn)
>>> hc49 = get_converter_balance(
... my_results, cat="power plant", tag="hard coal_049").sum()
>>> round(float((hc49["out"] / hc49["in"])), 2)
0.49

deflex.merit_order_from_scenario

	
deflex.merit_order_from_scenario(scenario, with_downtime=True, with_co2_price=True)

	Create a merit order from a deflex scenario.

	Parameters

	
	scenario (deflex.Scenario) – Path of the directory where the csv files of the scenario are located.

	with_downtime (bool) – Use down time factor to reduce the installed capacity.

	with_co2_price (bool) – Consider the CO2 price to calculate the merit order.

	Returns

	

	Return type

	pandas.DataFrame

Examples

>>> import os
>>> import deflex as dflx
>>> my_path = dflx.fetch_test_files("de02_no-heat_csv")
>>> my_sc = dflx.DeflexScenario()
>>> mo1 = dflx.merit_order_from_scenario(my_sc.read_csv(my_path))
>>> round(mo1.capacity_cum.iloc[-1], 4)
86.7028
>>> round(mo1.capacity.sum(), 1)
86702.8
>>> round(mo1.loc[("DE01", "natural gas - 0.55"), "costs_total"], 2)
49.37
>>> mo2 = merit_order_from_scenario(my_sc.read_csv(my_path),
... with_downtime=False)
>>> int(round(mo2.capacity.sum(), 0))
101405
>>> mo3 = merit_order_from_scenario(my_sc.read_csv(my_path),
... with_co2_price=False)
>>> round(mo3.loc[("DE01", "natural gas - 0.55"), "costs_total"], 2)
43.58

deflex.merit_order_from_results

	
deflex.merit_order_from_results(result)

	Create a merit order from deflex results.

	Parameters

	result (dict) – A deflex results dictionary.

	Returns

	

	Return type

	pandas.DataFrame

Examples

>>> import deflex as dflx
>>> fn = dflx.fetch_test_files("de02_no-heat.dflx")
>>> my_results = dflx.restore_results(fn)
>>> a = merit_order_from_results(my_results)

deflex.deflex_geo

	
deflex.deflex_geo(rmap)

	
	Fetch default deflex geometries as a named tuple with the following fields:

	
	polygons

	lines

	labels

	line_labels

Note that some fields might be None for some region sets.

	Parameters

	rmap (str) – Name of the deflex map. Possible values are: de01, de02, de17, de21,
de22

	Returns

	

	Return type

	namedtuple

Examples

>>> de02 = deflex_geo("de02")
>>> list(de02.polygons.index)
['DE01', 'DE02']
>>> p = de02.labels.loc["DE01"].geometry
>>> p.x, p.y
(10.0, 51.6)
>>> de02.lines.index
Index(['DE01-DE02'], dtype='object', name='name')
>>> de02.line_labels.iloc[0]
gid 246
rotation -42
geometry POINT (7.61 53.78)
Name: DE01-DE02, dtype: object
>>> de01 = deflex_geo("de01")
>>> print(de01.lines)
None

deflex.divide_off_and_onshore

	
deflex.divide_off_and_onshore(regions)

	Sort regions into onshore and offshore regions (Germany).

A namedtuple with two list
of regions ids will be returned. Fetch the onshore and offshore
attribute of the named tuple to get the list.

	Parameters

	regions (GeoDataFrame) – A region set with the region id in the index.

	Returns

	

	Return type

	namedtuple

Examples

>>> reg=deflex_regions('de02')
>>> divide_off_and_onshore(reg).onshore
['DE01']
>>> reg=deflex_regions('de21')
>>> divide_off_and_onshore(reg).offshore
['DE19', 'DE20', 'DE21']

deflex.dict2file

	
deflex.dict2file(tables, path, filetype='xlsx', drop_empty_columns=False)

	
	Parameters

	
	tables –

	path –

	filetype –

	drop_empty_columns –

deflex.use_logging

	
deflex.use_logging(**kwargs)

	

deflex.allocate_fuel_deflex

	
deflex.allocate_fuel_deflex(method, eta_e, eta_th)

	Allocate the fuel input of chp plants to the two output flows.

In contrast to allocate_fuel() default parameter
from the config file (deflex.ini) are used.

To change the default parameters create a deflex.ini file in $HOME/.deflex
and add the following section:

[chp]
eta_c = 0.555
eta_e_ref = 0.5
eta_th_ref = 0.9

This will overwrite the default values from deflex and use them as user
default values. Lines with values that are not needed in the chosen method
can be removed.

The following methods are available:

	Alternative Generation or Finnish method -> finnish_method()

	Exergy method or Carnot method -> exergy_method()

	IEA method -> iea_method()

	Efficiency method -> efficiency_method()

	Parameters

	
	method (str) – The method to allocate the output flows of chp plants:
alternative_generation, carnot, efficiency, electricity, exergy,
finnish, heat, iea

	eta_e (numeric) – The efficiency of the electricity production in the chp plant.

	eta_th (numeric) – The efficiency of the heat output in the chp plant.

	Returns

	The fuel factors of the output flows (heat/electricity)

	Return type

	namedtuple

Examples

>>> a = allocate_fuel_deflex("efficiency", eta_e=0.3, eta_th=0.5)
>>> round(a.electricity, 2)
2.08
>>> round(a.heat, 2)
0.75
>>> a = allocate_fuel_deflex("electricity", eta_e=0.3, eta_th=0.5)
>>> round(a.electricity, 2)
3.33
>>> a.heat
0.0
>>> a = allocate_fuel_deflex("exergy", eta_e=0.3, eta_th=0.5)
>>> round(a.electricity, 2)
1.73
>>> round(a.heat, 2)
0.96
>>> a = allocate_fuel_deflex("finnish", eta_e=0.3, eta_th=0.5)
>>> round(a.electricity, 2)
1.73
>>> round(a.heat, 2)
0.96
>>> a = allocate_fuel_deflex("heat", eta_e=0.3, eta_th=0.5)
>>> a.electricity
0.0
>>> a.heat
2.0
>>> a = allocate_fuel_deflex("iea", eta_e=0.3, eta_th=0.5)
>>> round(a.electricity, 2)
1.25
>>> round(a.heat, 2)
1.25

deflex.allocate_fuel

	
deflex.allocate_fuel(method, eta_e, eta_th, **kwargs)

	Allocate the fuel input of chp plants to the two output flows: heat and
electricity.

Use allocate_fuel_deflex() if you want to use the default values
of the config file or if you want to define your own default values.

The following methods are available:

	Alternative Generation or Finnish method -> finnish_method()

	Exergy method or Carnot method -> exergy_method()

	IEA method -> iea_method()

	Efficiency method -> efficiency_method()

The sum of the allocation factors of both flows is always one:
[image: \alpha_{th} + \alpha_{el} = 1]

The fuel factor is the allocation factor devided by the efficiency:

[image: f_{fuel, el}=\frac{\alpha_{el}}{\eta_{el}}\qquad f_{fuel, th}=\frac{\alpha_{th}}{\eta_{th}}]

[image: f_{fuel, el/th}] :Fuel factor of the electricity/heat flow

[image: \alpha_{el/th}] : Allocation factor of the electricity/heat flow

[image: \eta_{el/th}] : Efficiency of the electricity/heat output in the
chp plant

	Parameters

	
	method (str) – The method to allocate the output flows of chp plants:
alternative_generation, carnot, efficiency, electricity, exergy,
finnish, heat, iea

	eta_e (numeric) – The efficiency of the electricity production in the chp plant.
Mandatory for all functions.

	eta_th (numeric) – The efficiency of the heat output in the chp plant.Mandatory for all
functions.

	Other Parameters

	
	eta_c (numeric) – The Carnot factor of the heating system. Mandatory in
the following functions: exergy

	eta_e_ref (numeric) – The efficiency of the best power plant available on the market and
economically viable in the year of construction of the CHP plant.
Mandatory in the following functions: alternative_generation

	eta_th_ref (numeric) – The efficiency of the best heat plant available on the market and
economically viable in the year of construction of the CHP plant.
Mandatory in the following functions: alternative_generation

	Returns

	The fuel factors of the output flows (heat/electricity)

	Return type

	namedtuple

Examples

>>> a = allocate_fuel("efficiency", eta_e=0.3, eta_th=0.5)
>>> round(a.electricity, 2)
2.08
>>> round(a.heat, 2)
0.75
>>> a = allocate_fuel("electricity", eta_e=0.3, eta_th=0.5)
>>> round(a.electricity, 2)
3.33
>>> a.heat
0.0
>>> a = allocate_fuel("exergy", eta_e=0.3, eta_th=0.5, eta_c=0.555)
>>> round(a.electricity, 2)
1.73
>>> round(a.heat, 2)
0.96
>>> a = allocate_fuel("finnish", eta_e=0.3, eta_th=0.5, eta_e_ref=0.5,
... eta_th_ref=0.9)
>>> round(a.electricity, 2)
1.73
>>> round(a.heat, 2)
0.96
>>> a = allocate_fuel("heat", eta_e=0.3, eta_th=0.5)
>>> a.electricity
0.0
>>> a.heat
2.0
>>> a = allocate_fuel("iea", eta_e=0.3, eta_th=0.5)
>>> round(a.electricity, 2)
1.25
>>> round(a.heat, 2)
1.25

deflex.efficiency_method

	
deflex.efficiency_method(eta_e, eta_th)

	Efficiency Method - a method to allocate the fuel
input of chp plants to the two output flows: heat and electricity

The allocation factor [image: \alpha_{el}] of the electricity output is
calculated as follows:

[image: \alpha_{el}=\frac{\eta_{th}}{\eta_{el}+\eta_{th}}]

[image: \alpha_{el}] : Allocation factor of the electricity flow

[image: \eta_{el}] : Efficiency of the electricity output in the chp plant

[image: \eta_{th}] : Efficiency of the thermal output in the chp plant

	Parameters

	
	eta_e (numeric) – The efficiency of the electricity production in the chp plant.
Mandatory in the following functions: alternative_generation,
exergy, iea, efficiency

	eta_th (numeric) – The efficiency of the heat output in the chp plant. Mandatory in
the following functions: alternative_generation, exergy, iea,
efficiency

	Returns

	Allocation factor for the electricity flow

	Return type

	numeric

Examples

>>> round(efficiency_method(0.3, 0.5), 3)
0.625

deflex.exergy_method

	
deflex.exergy_method(eta_e, eta_th, eta_c)

	Exergy Method or Carnot Method- a method to allocate the fuel
input of chp plants to the two output flows: heat and electricity

The allocation factor [image: \alpha_{el}] of the electricity output is
calculated as follows:

[image: \alpha_{el}=\frac{\eta_{el}}{\eta_{el}+\eta_{c}\cdot\eta_{th}}]

[image: \alpha_{el}] : Allocation factor of the electricity flow

[image: \eta_{el}] : Efficiency of the electricity output in the chp plant

[image: \eta_{th}] : Efficiency of the thermal output in the chp plant

[image: \eta_{c}] : Carnot factor of the thermal energy

	Parameters

	
	eta_e (numeric) – The efficiency of the electricity production in the chp plant.
Mandatory in the following functions: alternative_generation,
exergy, iea, efficiency

	eta_th (numeric) – The efficiency of the heat output in the chp plant. Mandatory in
the following functions: alternative_generation, exergy, iea,
efficiency

	eta_c (numeric) – The Carnot factor of the heating system. Mandatory in
the following functions: exergy

	Returns

	Allocation factor for the electricity flow

	Return type

	numeric

Examples

>>> round(exergy_method(0.3, 0.5, 0.3), 3)
0.667

deflex.finnish_method

	
deflex.finnish_method(eta_e, eta_th, eta_e_ref, eta_th_ref)

	Alternative Generation or Finnish Method - a method to allocate the fuel
input of chp plants to the two output flows: heat and electricity

The allocation factor [image: \alpha_{el}] of the electricity output is
calculated as follows:

[image: \alpha_{el} = \frac{\eta_{el,ref}}{\eta_{el}} \cdot \left(\frac{\eta_{el}}{\eta_{el,ref}}+ \frac{\eta_{th}}{ \eta_{th,ref}} \right)]

[image: \alpha_{el}] : Allocation factor of the electricity flow

[image: \eta_{el}] : Efficiency of the electricity output in the chp plant

[image: \eta_{th}] : Efficiency of the thermal output in the chp plant

[image: \eta_{el,ref}] : Efficiency of the reference power plant

[image: \eta_{th,ref}] : Efficiency of the reference heat plant

	Parameters

	
	eta_e (numeric) – The efficiency of the electricity production in the chp plant.
Mandatory in the following functions: alternative_generation,
exergy, iea, efficiency

	eta_th (numeric) – The efficiency of the heat output in the chp plant. Mandatory in
the following functions: alternative_generation, exergy, iea,
efficiency

	eta_e_ref (numeric) – The efficiency of the best power plant available on the market and
economically viable in the year of construction of the CHP plant.
Mandatory in the following functions: alternative_generation

	eta_th_ref (numeric) – The efficiency of the best heat plant available on the market and
economically viable in the year of construction of the CHP plant.
Mandatory in the following functions: alternative_generation

	Returns

	Allocation factor for the electricity flow

	Return type

	numeric

Examples

>>> round(finnish_method(0.3, 0.5, 0.5, 0.9), 3)
0.519

deflex.iea_method

	
deflex.iea_method(eta_e, eta_th)

	IEA Method (International Energy Association - a method to allocate the
fuel input of chp plants to the two output flows: heat and electricity

The allocation factor [image: \alpha_{el}] of the electricity output is
calculated as follows:

[image: \alpha_{el}=\frac{\eta_{el}}{\eta_{el}+\eta_{th}}]

[image: \alpha_{el}] : Allocation factor of the electricity flow

[image: \eta_{el}] : Efficiency of the electricity output in the chp plant

[image: \eta_{th}] : Efficiency of the thermal output in the chp plant

	Parameters

	
	eta_e (numeric) – The efficiency of the electricity production in the chp plant.
Mandatory in the following functions: alternative_generation,
exergy, iea, efficiency

	eta_th (numeric) – The efficiency of the heat output in the chp plant. Mandatory in
the following functions: alternative_generation, exergy, iea,
efficiency

	Returns

	Allocation factor for the electricity flow

	Return type

	numeric

Examples

>>> round(iea_method(0.3, 0.5), 3)
0.375

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/reegis/deflex/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

deflex could always use more documentation, whether as part of the
official deflex docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/reegis/deflex/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up deflex for local development:

	Fork deflex [https://github.com/reegis/deflex]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:YOURGITHUBNAME/deflex.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes run all the checks and docs builder with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/reegis/deflex/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel:

tox -p auto

Development

To run all the tests run:

tox

Note, to combine the coverage data from all the tox environments run:

	Windows

	set PYTEST_ADDOPTS=--cov-append
tox

	Other

	PYTEST_ADDOPTS=--cov-append tox

Authors

	Uwe Krien - University of Bremen [https://www.uni-bremen.de/en/res/team/dr-ing-uwe-krien]

Changelog

0.3.1 (2021-05 ??)

	…

0.3.0 (2021-03-25)

There are many API changes in the v0.3.0 release but it is planned to keep the
API more stable from now on.

	Layout of input data changed

	Attributes und function names for adapted.

	Documentation now covers all parts of the package

	Examples and illustrative images were added

	Code were cleaned up

	Tests are more stable, test coverage increased slightly

	Example data (v03) can be downloaded from the deflex OSF page [https://osf.io/a5xrj/files/].

Authors

	Uwe Krien

	Pedro Duran

0.2.0 (2021-01-25)

	Move basic scenario with reegis dependency to new package

	Revise structure

	Add tox tests: pyflake, docs, coverage, tests, link-test, manifest, isort

Authors

	Uwe Krien

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | W

_

 	
 	__init__() (deflex.Cycles method)

 	(deflex.DeflexGraph method)

 	(deflex.DeflexScenario method)

 	(deflex.postprocessing.graph.Edge method)

A

 	
 	add_nodes_to_es() (deflex.DeflexScenario method)

 	
 	allocate_fuel() (in module deflex)

 	allocate_fuel_deflex() (in module deflex)

B

 	
 	batch_model_scenario() (in module deflex)

C

 	
 	calculate_key_values() (in module deflex)

 	check_input_data() (deflex.DeflexScenario method)

 	color (deflex.postprocessing.graph.Edge attribute)

 	color_edges_by_weight() (deflex.DeflexGraph method)

 	color_nodes_by_substring() (deflex.DeflexGraph method)

 	color_nodes_by_type() (deflex.DeflexGraph method)

 	
 	compute() (deflex.DeflexScenario method)

 	create_model() (deflex.DeflexScenario method)

 	create_nodes() (deflex.DeflexScenario method)

 	create_scenario() (in module deflex)

 	Cycles (class in deflex)

 	cycles (deflex.Cycles attribute)

D

 	
 	default_edge_color (deflex.DeflexGraph attribute)

 	default_node_color (deflex.DeflexGraph attribute)

 	deflex_geo() (in module deflex)

 	DeflexGraph (class in deflex)

 	
 	DeflexScenario (class in deflex)

 	details() (deflex.Cycles method)

 	dict2file() (in module deflex)

 	divide_off_and_onshore() (in module deflex)

 	dump() (deflex.DeflexScenario method)

E

 	
 	Edge (class in deflex.postprocessing.graph)

 	edges (deflex.DeflexGraph attribute)

 	
 	efficiency_method() (in module deflex)

 	es (deflex.DeflexScenario attribute)

 	exergy_method() (in module deflex)

F

 	
 	fetch_attributes_of_commodity_sources() (in module deflex)

 	fetch_converter_parameters() (in module deflex)

 	
 	fetch_dual_results() (in module deflex)

 	finnish_method() (in module deflex)

G

 	
 	get_all_results() (in module deflex)

 	get_combined_bus_balance() (in module deflex)

 	get_converter_balance() (in module deflex)

 	
 	get_suspicious_time_steps() (deflex.Cycles method)

 	get_time_index() (in module deflex)

 	group_buses() (in module deflex)

 	group_nodes_by_type() (deflex.DeflexGraph method)

I

 	
 	iea_method() (in module deflex)

 	
 	initialise_energy_system() (deflex.DeflexScenario method)

 	input_data (deflex.DeflexScenario attribute)

L

 	
 	label (deflex.postprocessing.graph.Edge attribute)

M

 	
 	main() (in module deflex.console_scripts)

 	merit_order_from_results() (in module deflex)

 	merit_order_from_scenario() (in module deflex)

 	
 	meta (deflex.DeflexScenario attribute)

 	meta_results2series() (in module deflex)

 	model_multi_scenarios() (in module deflex)

 	model_scenario() (in module deflex)

N

 	
 	name (deflex.Cycles attribute)

 	nodes (deflex.DeflexGraph attribute)

 	(deflex.postprocessing.graph.Edge attribute)

 	
 	nodes2table() (in module deflex)

 	nxgraph() (deflex.DeflexGraph method)

P

 	
 	print() (deflex.Cycles method)

R

 	
 	read_csv() (deflex.DeflexScenario method)

 	read_xlsx() (deflex.DeflexScenario method)

 	restore_results() (in module deflex)

 	
 	restore_scenario() (in module deflex)

 	result() (in module deflex.console_scripts)

 	results (deflex.DeflexScenario attribute)

S

 	
 	search_dumped_scenarios() (in module deflex)

 	search_input_scenarios() (in module deflex)

 	sequence (deflex.postprocessing.graph.Edge attribute)

 	simple_cycles (deflex.Cycles attribute)

 	
 	solve() (deflex.DeflexScenario method)

 	solver_results2series() (in module deflex)

 	store_graph() (deflex.DeflexScenario method)

 	suspicious_cycles (deflex.Cycles attribute)

T

 	
 	table2es() (deflex.DeflexScenario method)

 	
 	to_csv() (deflex.DeflexScenario method)

 	to_xlsx() (deflex.DeflexScenario method)

U

 	
 	use_logging() (in module deflex)

 	
 	used_cycles (deflex.Cycles attribute)

W

 	
 	weight (deflex.postprocessing.graph.Edge attribute)

 	
 	write() (deflex.DeflexGraph method)

Input data

The input data is stored in the input_data attribute of the
DeflexScenario
class (s. DeflexScenario). It is a dictionary with the name of the
data set as key and the data table itself as value (pandas.DataFrame or
pandas.Series).

The input data is divided into four main topics: High-level-inputs, electricity
sector, heating sector (optional) and mobility sector (optional).

Download examples (link) to get an idea of the typical structure. Then go on
with the following chapter to learn everything about how to define the data of
a deflex model.

	Overview

	High-level-input (mandatory)

	Electricity sector (mandatory)

	Heating sector (optional)

	Mobility sector (optional)

	Other (optional)

Overview

[image: _images/spreadsheet_examples.png]
A Deflex scenario can be divided into regions. Each region must have an
identifier number and be named after it as DEXX, where XX is the
number. For refering the Deflex scenario as a whole (i.e. the sum of all
regions) use DE only.

At the current state the distribution of fossil fuels is neglected. Therefore,
in order to keep the computing time low it is recommended to define them
supra-regional using DE without a number. It is still possible to define
them regional for example to add a specific limit for each region.

Note

The nomenclature above is the one used in the examples. It is also possible
to extend it e.g. for surrounding countries (AT, FR, PL…) or
to totally deviate from it. Nevertheless, it might be helpful to keep the
basic idea of using the country code of the top level domain [https://en.wikipedia.org/wiki/Country_code_top-level_domain] followed by
a number if subregions exist or without a number. This will help other users
to understand your data.

In most cases it is also sufficient to model the fossil part of the mobility
and the decentralised heating sector supra-regional. It is assumed that a
gas boiler or a filling station is always supplied with enough fuel, so that
only the annual values affect the model. This does not apply to electrical
heating systems or cars.

In most spread sheet software it is possible to connect cells to increase
readability. These lines are interpreted correctly. In csv files the values
have to appear in every cell. So the following two tables will be interpreted
equally!

Connected cells

	
	
	value

	DE01

	F1

	

	F2

	

	DE02

	F1

	

Unconnected cells

	
	
	value

	DE01

	F1

	

	DE01

	F2

	

	DE02

	F1

	

Note

NaN-values are not allowed in any table. Some columns are optional and can
be left out, but if a column is present there have to be values in every
row. Neutral values can be 0, 1 or inf.

High-level-input (mandatory)

	General

	Info

	Commodity sources

	Data sources

General

key: ‘general’, value: pandas.Series() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html]

This table contains basic data about the scenario.

	year

	

	co2 price

	

	number of time steps

	

	name

	

INDEX

	year: int, [-]

	A time index will be created starting with January 1, at 00:00 with the
number of hours given in number of time steps.

	co2 price: float, [€/t]

	The average price for CO2 over the whole time period.

	number of time steps: int, [-]

	The number of hourly time steps.

	name: str, [-]

	A name for the scenario. This name will be used to compare key values
between different scenarios. Therefore, it should be unique within a group
of scenarios. It does not have to be intuitive. Use the info table for
a human readable description of your scenario.

Info

key: ‘info’, value: pandas.Series() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html]

On this sheet, additional information that characterizes the scenario can be
added. The idea behind Info is that the user can filter stored scenarios using
the search_dumped_scenarios() function.

You can create any key-value pair which is suitable for a group of scenarios.

e.g. key: scenario_type value: foo / bar / foobar

Afterwards you can search for all scenarios where the scenario_type is
foo using search_dumped_scenarios(). See
documentation and examples of this function for more details.

	key1

	

	key2

	

	key3

	

	…

	…

Commodity sources

key: ‘commodity sources’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet requires data from all the commodities used in the scenario. The
data can be provided either supra-regional under DE, regional under DEXX or as a
combination of both, where some commodities are global and some are regional.
Regionalised commodities are especially useful for commodities with an annual
limit, for example bioenergy.

	
	
	costs

	emission

	annual limit

	DE

	F1

	
	
	

	F2

	
	
	

	DE01

	F1

	
	
	

	DE02

	F2

	
	
	

	…

	…

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Fuel type (e.g. natural gas or bionenergy).

COLUMNS

	costs: float, [€/MWh]

	The fuel production cost.

	emission: float, [t/MWh]

	The fuel emission factor.

	annual limit: float, [MWh]

	The annual maximum energy generation (if there is one, otherwise just use
inf). If the annual limit is inf in every line the column can be
left out.

Data sources

key: ‘data sources’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Highly recomended. Here the type data, the source name and the url from where
they were obtained can be listed. It is a free format and additional columns
can be added. This table helps to make your scenario as transparent as
possible.

	
	source

	url

	v1

	…

	cost data

	Institute

	http1

	a1

	…

	pv plants

	Organisation

	http2

	a2

	…

	…

	…

	…

	…

	…

Electricity sector (mandatory)

	Electricity demand series

	Power plants

	Volatiles plants

	Volatile series

	Power lines

	Electricity storages

Electricity demand series

key: ‘electricity demand series’,
value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet requires the electricity demand of the scenario as a time series. One summarised demand series for each region is enough, but it
is possible to distinguish between different types. This will not have any
effect on the model results but may help to distinguish the different flows in
the results.

	
	DE01

	DE02

	DE03

	…

	
	all

	industry

	buildings

	rest

	all

	…

	Time step 1

	
	
	
	
	
	…

	Time step 2

	
	
	
	
	
	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Specification of the series e.g. “all” for an overall series.

Power plants

key: ‘power plants’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

The power plants will feed in the electricity bus of the region the are
located. The data must be divided by region and subdivided by fuel. Each row
can indicate one power plant or a group of power plants. It is possible to add
additional columns for information purposes.

	
	
	capacity

	fuel

	efficiency

	annual electricity limit

	variable_cost

	downtime_factor

	source_region

	DE01

	N1

	
	
	
	
	
	
	

	N2

	
	
	
	
	
	
	

	N3

	
	
	
	
	
	
	

	DE02

	N2

	
	
	
	
	
	
	

	N3

	
	
	
	
	
	
	

	…

	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary. The combination of region and name is the unique
identifier for the power plant or the group of power plants.

COLUMNS

	capacity: float, [MW]

	The installed capacity of the power plant or the group of power plants.

	fuel: str, [-]

	The used fuel of the power plant or group of power plants. The combination
of source_region and fuel must exist in the commodity sources table.

	efficiency: float, [-]

	The average overall efficiency of the power plant or the group of power
plants.

	annual limit: float, [MWh]

	The absolute maximum limit of produced electricity within the whole
modeling period.

	variable_costs: float, [€/MWh]

	The variable costs per produced electricity unit.

	downtime_factor: float, [-]

	The time fraction of the modeling period in which the power plant or the
group of power plants cannot produce electricity. The installed capacity
will be reduced by this factor capacity * (1 - downtime_factor).

	source_region, [-]

	The source region of the fuel source. Typically this is the region of the
index or DE if it is a global commodity source. The combination of
source_region and fuel must exist in the commodity sources table.

Volatiles plants

key: ‘volatile plants’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Examples of volatile power plants are solar, wind, hydro, geothermal. Data
must be provided divided by region and subdivided by energy source. Each row
can indicate one plant or a group of plants. It is possible to add additional
columns for information purposes.

	
	
	capacity

	DE01

	N1

	

	
	N2

	

	DE02

	N1

	

	DE03

	N1

	

	
	N3

	

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary. The combination of the region and the name has to exist as
a time series in the volatile series table.

COLUMNS

	capacity: float, [MW]

	The installed capacity of the plant.

Volatile series

key: ‘volatile series’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet provides the normalised feed-in time series in
MW/MW installed. So each time series will multiplied with its installed
capacity to get the absolute feed-in. Therefore, the combination of region and
name has to exist in the volatile plants table.

	
	DE01

	DE02

	DE03

	…

	
	N1

	N2

	N1

	N1

	N3

	…

	Time step 1

	
	
	
	
	
	…

	Time step 2

	
	
	
	
	
	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name of the energy source specified in the previous sheet.

Power lines

key: ‘power lines’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

The power lines table defines the connection between the electricity buses of
each region of the scenario. There is no default connection. If no connection
is defined the regions will be self-sufficient.

	
	capacity

	efficiency

	DE01-DE02

	
	

	DE01-DE03

	
	

	DE02-DE03

	
	

	…

	…

	…

INDEX

	Name: str

	Name of the 2 connected regions separated by a dash. Define only one
direction. In the model one line for each direction will be created. If
both directions are defined in the table two lines for each direction will
be created for the model, so that the capacity will be the sum of both
lines.

COLUMNS

	capacity: float, [MW]

	The maximum transmission capacity of the power lines.

	efficiency:float, [-]

	The transmission efficiency of the power line.

Electricity storages

key: ‘storages’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Electricity storages is a particular case of storages (see
Storages). The condition to use a storage as an electricity storage
is to define electricity in the storage medium column.

Heating sector (optional)

	Heat demand series

	Decentralised heat

	Chp - heat plants

Heat demand series

key: ‘heat demand series’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

The heat demand can be entered regionally under DEXX or supra-regional under DE.
The only type of demand that must be entered regionally is district heating.
As recommendation, coal, gas, or oil demands should be treated supra-regional.

	
	DE01

	DE02

	
	DE

	
	district heating

	N1

	district heating

	N1

	N2

	…

	N3

	N4

	N5

	Time step 1

	
	
	
	
	
	
	
	
	

	Time step 2

	
	
	
	
	
	
	
	
	

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Name. Specification of the series e.g. district heating, coal, gas.
Except for district heating each combination of region and name must
exist in the decentralised heat table.

Decentralised heat

key: ‘decentralised heat’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet covers all heating technologies that are used to generate
decentralized heat. In this context decentralised does not mean regional it
represents the large group of independent heating systems. If there is no
specific reason to define a heating system regional they should be defined supra-regional.

	
	
	efficiency

	source

	source region

	DE01

	N1

	
	
	DE01

	DE02

	N1

	
	
	DE02

	N2

	
	
	DE02

	
	…

	
	
	…

	DE

	N3

	
	
	DE

	N4

	
	
	DE

	N5

	
	
	DE

INDEX

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Name, arbitrary.

COLUMNS

	efficiency: float, [-]

	The efficiency of the heating technology.

	source: str, [-]

	The source that the heating technology uses. Examples are coal, oil for
commodities, but it could also be electricity in case of a heat pump.
Except for electricity the combination of source and source region
has to exist in the commodity sources table. The electricity source
will be connected to the electricity bus of the region defined in
source region.

	source region: str

	The region where the source comes from (see source).

Chp - heat plants

key: ‘chp-heat plants’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet covers CHP and heat plants. Each plant will feed into the
district heating bus of the region it it is located. The demand of
district heating is defined in the heat demand series table with the name
district heating. All plants of the same region with the same fuel can be
defined in one row but it is also possible to divide them by additional
categories such as efficiency etc.

	
	
	limit heat chp

	capacity heat chp

	capacity elec chp

	limit hp

	capacity hp

	efficiency hp

	efficiency heat chp

	efficiency elec chp

	fuel

	source region

	DE01

	N1

	
	
	
	
	
	
	
	
	
	DE01

	N3

	
	
	
	
	
	
	
	
	
	DE

	N4

	
	
	
	
	
	
	
	
	
	DE

	DE02

	N1

	
	
	
	
	
	
	
	
	
	DE02

	N2

	
	
	
	
	
	
	
	
	
	DE02

	N3

	
	
	
	
	
	
	
	
	
	DE

	N4

	
	
	
	
	
	
	
	
	
	DE

	N5

	
	
	
	
	
	
	
	
	
	DE

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary.

COLUMNS

	limit heat chp: float, [MWh]

	The absolute maximum limit of heat produced by chp within the whole
modeling period.

	capacity heat chp: float, [MW]

	The installed heat capacity of all chp plants of the same group in the
region.

	capacity elect chp: float, [MW]

	The installed electricity capacity of all chp plants of the same group in
the region.

	limit hp: float, [MWh]

	The absolute maximum limit of heat produced by the heat plant within the
whole modeling period.

	capacity hp: float, [MW]

	The installed heat capacity of all heat of the same group in the region.

	efficiency hp: float, [-]

	The average overall efficiency of the heat plant.

	efficiency heat chp: float, [-]

	The average overall heat efficiency of the chp.

	efficiency elect chp: float, [-]

	The average overall electricity efficiency of the chp.

	fuel: str, [-]

	The used fuel of the plants. The fuel name must be equal to the fuel
type of the commodity sources. The combination of fuel and
source region has to exist in the commodity sources table.

	source_region, [-]

	The source region of the fuel source. Typically this is the region of the
index or DE if it is a global commodity source.

Mobility sector (optional)

	Mobility demand series

	Mobility

Mobility demand series

key: ‘mobility series’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

The mobility demand can be entered regionally or supra-regional. However, it is
recommended to define the mobility demand supra-regional except for
electricity. The demand for electric mobility has be defined regional because
it will be connected to the electricity bus of each region. The combination of
region and name has to exist in the mobility table.

	
	DE01

	DE02

	…

	DE

	
	electricity

	electricity

	
	N1

	Time step 1

	
	
	
	

	Time step 2

	
	
	
	

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Specification of the series e.g. “electricity” for each region or “diesel”,
“petrol” for DE.

Mobility

key: ‘mobility’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

This sheet covers the technologies of the mobility sector.

	
	
	efficiency

	source

	source region

	DE01

	electricity

	
	electricity

	DE01

	DE02

	electricity

	
	electricity

	DE02

	…

	
	
	
	

	DE

	N1

	
	oil/biofuel/H2/etc

	DE

INDEX

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Name, arbitrary.

COLUMNS

	efficiency: float, [-]

	The efficiency of the fuel production. If a diesel demand is defined in
the mobility demand series table the efficiency represents the
efficiency of diesel production from the commodity source e.g. oil. For
a biofuel demand the efficiency of the production of biofuel from
biomass has to be defined.

	source: str, [-]

	The source that the technology uses. Except for electricity the
combination of source and source region has to exist in the
commodity sources table. The electricity source will be connected to
the electricity bus of the region defined in source region.

	source region: str, [-]

	The region where the source comes from.

Other (optional)

	Storages

	Other converters

	Other demand series

	Demand response

Storages

key: ‘storages’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Different type of storages can be defined in this table. All different
storage technologies (pumped hydro, batteries, compressed air, hydrogen, etc) have to be
entered in a general way. Each row can indicate one storage or a group of
storages. If the storage medium is electricity, then the storage must exist in a region DEXX. Otherwise, the storage can be defined under DE. It is possible to add additional columns for information purposes.

	
	
	storage medium

	energy content

	energy inflow

	charge capacity

	discharge capacity

	charge efficiency

	discharge efficiency

	loss rate

	DE01

	S1

	electricity

	
	
	
	
	
	
	

	
	S2

	electricity

	
	
	
	
	
	
	

	DE02

	S1

	electricity

	
	
	
	
	
	
	

	DE

	S3

	hydrogen

	
	
	
	
	
	
	

	…

	…

	…

	…

	…

	…

	…

	…

	…

	…

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary.

COLUMNS

	storage medium: str

	The medium used to store energy. The storage medium must be defined in commodities, or it must be electricity.

	energy content: float, [MWh]

	The maximum energy content of a storage or a group storages.

	energy inflow: float, [MWh]

	The amount of energy that will feed into the storage of the model period in
MWh. For example a river into a pumped hydroelectric energy storage.

	charge capacity: float, [MW]

	Maximum capacity to charge the storage or the group of storages.

	discharge capacity: float, [MW]

	Maximum capacity to discharge the storage or the group of storages.

	charge efficiency: float, [-]

	Charging efficiency of the storage or the group of storages.

	discharge efficiency: float, [-]

	Discharging efficiency of the storage or the group of storages.

	loss rate: float, [-]

	The relative loss of the energy content of the storage. For example a loss
rate or 0.01 means that the energy content of the storage will be
reduced by 1% in each time step.

Other converters

key: ‘other converters’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Here, other converters than the ones already set, can be defined for linking different buses. A good example here is an electrolyser which connects electricity with hydrogen. Each converter has a source and a target bus with their respective regions. Other converter´s format is analogous to that of power plants and heat plants.

	
	
	capacity

	annual limit

	efficiency

	variable costs

	downtime factor

	source

	source region

	target

	target region

	DE

	electrolyser1

	
	
	
	
	
	electricity

	DE01

	hydrogen

	DE

	DE

	electrolyser2

	
	
	
	
	
	electricity

	DE02

	hydrogen

	DE

	DE01

	C1

	
	
	
	
	
	S1

	DE01

	T1

	DE01

INDEX

	level 0: str

	Region (e.g. DE01, DE02).

	level 1: str

	Name, arbitrary. The combination of region and name is the unique
identifier for the converter or the group of converters.

COLUMNS

	capacity: float, [MW]

	The installed capacity of the converter or the group of converters.

	annual limit: float, [MWh]

	The absolute maximum limit of produced target units within the whole
modeling period.

	efficiency: float, [-]

	The average overall efficiency of the converter or the group of converters.

	variable_costs: float, [€/MWh]

	The variable costs per produced target unit.

	downtime_factor: float, [-]

	The time fraction of the modeling period in which the converter or the
group of converters cannot produce target units. The installed capacity
will be reduced by this factor capacity * (1 - downtime_factor).

	source: str, [-]

	The source bus of the converter or group of converters. The combination
of source_region and source must exist in the commodity sources table or it can be electricity with its region DEXX.

	source_region, [-]

	The source region of the source. Typically this is the region of the
index or DE if it is a global commodity source.

	target: str, [-]

	The target bus of the converter or group of converters. The combination
of target_region and target must exist in the commodity sources table or it can be electricity with its region DEXX.

	trget_region, [-]

	The target region of the target. Typically this is the region of the
index or DE if it is a global commodity target.

Other demand series

key: ‘other demand series’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Here, other demands different from electricity, heat or mobility can be entered as time series. Examples are hydrogen or synthetic fuel for the industry sector.
The demands can be entered regionally under DEXX or supra-regional under DE. The format here is analogous to that of electricity, heat and mobility demand series.

	
	DE01

	DE02

	DE

	
	D1

	D2

	D1

	D3

	hydrogen

	syn fuel

	
	sector 1

	sector 1

	sector 2

	sector 3

	industry

	industry

	Time step 1

	
	
	
	
	
	

	Time step 2

	
	
	
	
	
	

	…

	…

	…

	…

	…

	…

	…

INDEX

	time step: int

	Number of time step. Must be uniform in all series tables.

COLUMNS

unit: [MW]

	level 0: str

	Region (e.g. DE01, DE02 or DE).

	level 1: str

	Name. Specification of the series e.g. hydrogen, syn fuel.

	level 2: str

	Sector name. Specification of the series e.g. industry, LULUCF. This extra level is used to differentiate the sector in which the commodity is used, since the same commodity may be used in different sectors.

Demand response

key: ‘demand response’, value: pandas.DataFrame() [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html]

Demand response, also known as demand side management is used to represent flexibility in the demand time series. Because of that it is applied on the four different demand series. There is the option of using two different methods of demand response: the interval and the delay one. The documentation of both methods con be found in SinkDSM [https://oemof-solph.readthedocs.io/en/latest/usage.html#oemof-solph-custom-sinkdsm-label] where the interval method corresponds to “oemof” and the delay to “DIW” method. Depending on whether the interval or delay method is used, the shift interval or delay columns must be used. Finally, there is also the option of adding a price to use this feature.

	
	
	
	
	capacity up

	capacity down

	method

	shift interval

	delay

	cost up

	cost down

	mobility demand series

	DE01

	electricity

	None

	
	
	interval

	8

	0

	
	

	DE02

	electricity

	None

	
	
	interval

	8

	0

	
	

	DE

	oil

	None

	
	
	delay

	0

	10

	
	

	electricity demand series

	DE01

	all

	None

	
	
	interval

	8

	0

	
	

	DE02

	indsutry

	None

	
	
	interval

	8

	0

	
	

	DE02

	buildings

	None

	
	
	interval

	8

	0

	
	

	heat demand series

	DE01

	heat pump

	None

	
	
	interval

	6

	0

	
	

	DE

	natural gas

	None

	
	
	delay

	6

	0

	
	

	other demand series

	DE

	hydrogen

	indsutry

	
	
	delay

	0

	12

	
	

INDEX

	level 0: str

	Name of the demand serie.

	level 1: str

	Region (e.g. DE01, DE02 or DE)

	level 2: str

	Specification of the serie. The combination of region and
specification of the serie has to exist in the corresponding demand serie sheet.

	level 3: str

	Sector name. This extra index is for when other demand series is used. If this is not the case, just write None instead.

COLUMNS

	capacity up: float, [MW]

	The maximum limit with respect to the demand, to which the demand can be increased.

	capacity down: float, [MW]

	The minimum limit with respect to the demand, to which the demand can be reduced.

	method: str, [-]

	The method chosen to be used.

	shift interval: str, [-]

	If the interval method is used, this column indicates the maximum interval that the demand can be shifted.

	delay: str, [-]

	If the deelay method is used, this column indicates the maximum delay that demand can be shifted.

	cost up: float, [€/MWh]

	The variable costs per shifted up unit

	cost down: float, [€/MWh]

	The variable costs per shifted down unit.

Results

All results are stored in the
results attribute of the
DeflexScenario class. It is a dictionary with
the following keys:

	main – Results of all variables (result dictionary from oemof.solph)

	param – Input parameter

	meta – Meta information and tags of the scenario

	problem – Information about the linear problem such as lower bound,
upper bound etc.

	solver – Solver results

	solution – Information about the found solution and the objective value

The deflex package provides some analyse functions as described below but
it is also possible to write your own post processing based on the oemof.solph
API. See the
results chapter of the oemof.solph documentation [https://oemof-solph.readthedocs.io/en/latest/usage.html#handling-results]
to learn how to handle the results.

Restore results

Most postprocessing functions need the results dictionary of the
DeflexScenario as an input. So it is possible to restore only the results
dictionary. Nevertheless, also the whole DeflexScenario object can be
restored.

	restore_scenario() – restore a full scenario

	restore_results() – restore only the results dictionary.

Both function need the full file name (including the path) to the dumped
scenario as input parameter. If you have many dumped files onn your hard disc
you can use a search function to find and filter the files.

	search_dumped_scenarios() – search dump files on your hard disc.

The output of the search function can be directly used in the restore
functions from above.

Postprocessing

There are different types of postprocessing functions available. Some can be
used to verify the overall behaviour of the model. This can be used for
debugging but also for plausibility checks. Some can be used to calculated
additional key values from the results or to prepare the results to calculate
further values. Furthermore, it is possible to get the result from all
model variables in the xlsx or csv format.

For most postprocessing calculations cycles can cause problems because
assumptions are needed on how to deal with the cycles and it is difficult to
implement all possible assumptions in the functions. Therefore it might be
easier to use the basic preparation functions and write your own calculations.
See below on how to identify different kind of cycles.

Custom postprocessing

For a custom post processing it is possible to filter, group and prepare the
results to ones own needs. Use dictionary and list comprehensions to find the
needed flows and groups. The label and the class of the nodes can be used to
filter the nodes.

The keys of the results["main"] dictionary are tuples.

	FLows: (<from_node>, <to_node>)

	Components (<component>, None)

	Buses (<bus>, None)

A node can be a component or a bus. The values of the tuples are the objects
or None.

Get the keys of all buses:

from oemof.solph import Bus
bus_keys = [k for k in results["Main"].keys()
 if isinstance(k[0], Bus) and k[1] is None]

Get a list of buses:

from oemof.solph import Bus
buses = [k[0] for k in results["Main"].keys()
 if isinstance(k[0], Bus) and k[1] is None]

Get a table of all flows from pv sources:

Long version:

import pandas as pd
pv_keys = [
 k
 for k in results["Main"].keys()
 if k[0].label.tag == "volatile" and k[0].label.subtag == "solar"
]
pv = {}
for pv_key in pv_keys:
 pv[dflx.label2str(pv_key[0].label)] = results["Main"][pv_key][
 "sequences"
]["flow"]
print(pd.DataFrame(pv))

Short version:

import pandas as pd
pv = {
 dflx.label2str(k[0].label): v["sequences"]["flow"]
 for k, v in results["Main"].items()
 if k[0].label.tag == "volatile" and k[0].label.subtag == "solar"
}
print(pd.DataFrame(pv))

For more information about the results handling also see the
results chapter of the oemof.solph documentation [https://oemof-solph.readthedocs.io/en/latest/usage.html#handling-results].

The following table gives an overview over the used classes and the naming of
the label of the deflex components and buses. Each label is a nametuple with
the fields cat, tag, subtag and region.

Classes and labels of deflex nodes

	
	class

	cat

	tag

	subtag

	region

	commodity bus

	Bus

	commodity

	all

	<fuel>

	<region>

	electricity bus

	Bus

	electricity

	all

	all

	<region>

	district heating bus

	Bus

	heat

	district

	all

	<region>

	decentralised heat bus

	Bus

	heat

	decentralised

	<fuel>

	<region>

	mobility bus

	Bus

	mobility

	all

	<name>

	<region>

	shortage source

	Source

	shortage

	<cat of bus>

	<subtag of bus>

	<region>

	commodity source

	Source

	source

	commodity

	<fuel>

	<region>

	volatile source

	Source

	source

	volatile

	<name>

	<region>

	power line

	Transformer

	line

	electricity

	<from region>

	<to region>

	mobility system

	Transformer

	mobility system

	<name>

	<fuel>

	<region>

	chp plant

	Transformer

	chp plant

	<name>

	<fuel>

	<region>

	decentralised heat system

	Transformer

	decentralised heat

	<name>

	<fuel>

	<region>

	heat plant

	Transformer

	heat plant

	<name>

	<fuel>

	<region>

	power plant

	Transformer

	power plant

	<name>

	<fuel>

	<region>

	other converter

	Transformer

	other converter

	<name>

	<fuel>

	<region>

	excess sink

	Sink

	excess

	<cat of bus>

	<subtag of bus>

	<region>

	electricity demand

	Sink

	electricity demand

	electricity

	<name>

	<region>

	district heat demand

	Sink

	heat demand

	district

	all

	<region>

	decentralised heat demand

	Sink

	heat demand

	decentralised

	<fuel>

	<region>

	mobility demand

	Sink

	mobility demand

	mobility

	<name>

	<region>

	other demand

	Sink

	other demand

	other

	<fuel>

	<region>

	storages

	GenericStorage

	storage

	<medium>

	<name>

	<region>

Export all results

To export the results from all variables into the xlsx or csv format,
the results can be stored in a collection of pandas.DataFrame. This collection
can be stored into a file. An example for this workflow can be found in the
documentation of the function:

	get_all_results() – get all results as dictionary

	dict2file() – store the dictionary into a file

Get common values from results

The following values will be returned on an hourly base:

	marginal costs [EUR/MWh]

	highest emission [tons/MWh]

	lowest emission [tons/MWh]

	marginal costs power plant [-]

	emission of marginal costs power plant [tons/MWh]

	deflex.calculate_key_values() – get key values on an hourly base

At the moment this works only with hourly time steps. This function is still
work in progress and may return more key values in the future. Please write an
issue on github [https://github.com/reegis/deflex] for a discussion about
further values.

Analyse flow cycles

As a directed graph is used to define an energy system. Cycles are defined as
a group of successive directed flows, where the first and the last node or bus
are the same. Small cycles are all storages. As this is a trivial solution of
a cycle analysis storages can be excluded. Another kind of cycles are the
combination of electrolysis and hydrogen power plants. Power lines will also
cause cycles. Pure power line cycles can also be excluded but this will not
exclude a cycle cause by an electrolysis in one region and a hydrogen power
plant in another even though a power line is included in this cycle.

A cycle may not be a problem if it is not used as a cycle in the system. So it
is also possible to analyse the usage of the cycle:

	cycle – a cycle that can be used within the model

	used cycle – a cycle in which all involved flows are used at least once.

	suspicious cycle – a cycle in which all involved flows are used within one
time step.

The following functions are available

	Cycles() – initialise a Cycle object

	cycles() – all cycles in one table per cycle

	used_cycles() – all used cycles in one table per
cycle

	suspicious_cycles() – all suspicious cycles in one
table per cycle

	get_suspicious_time_steps() – get the time steps in
which all flows are active

	print() – print an overview of all existing cycles

	details() – print a more detailed overview of all
existing cycles

Analyse the energy system graph

It is possible to convert the graph of the EnergySystem class into an nxgraph
of networkx. So, it is possible to use all methods and functions of networkx
associate with a directed graph (DiGraph). Furthermore, deflex provides some
function to associate colors with types of nodes or with the total weight of an
edge (flow). This can be used if the graph is exported to a graphml file.
Such a file can be opened in e.g. yEd where the colors can be used to display
the nodes and edges in the associated colors.

	DeflexGraph() – initialise a DeflexGraph object

	nxgraph() – get an DiGraph of networkx

	write() – export the graph to a graphml file

	color_edges_by_weight() – associate a color
from a color map according to the total weight

	color_nodes_by_type() – associate a color by
the type of the node

	color_nodes_by_substring() – associate a color
by a substring of the label of the node

	group_nodes_by_type() – group all nodes of the
graph by their type

Get dual variables

The dual variable is available for all buses in the energy system.

fetch_dual_results() – Get the resulta of the dual variables
of all buses in one table

CHP allocation

These tool are mostly not connected to deflex but could be used in any context.
The functions just implement typical allocation methods in Python code:

	allocate_fuel_deflex() – allocate the fuel with default values from a config file

	allocate_fuel() – allocate the fuel with all values
defined by the user

	efficiency_method() – efficiency method

	exergy_method() – carnot or exergy method

	finnish_method() – alternative_generation or finnish
method

	iea_method() – IEA method

Arrange parts of the results

This parts can be used for plots and identification of the model

	solver_results2series() – get the results returned from
the external solver

	meta_results2series() – get some general and meta results

	group_buses() – group all buses by label

	get_time_index() – get the used time index

	nodes2table() – get an overview about all nodes and their total in- and outflows

Combine results and parameter

The following functions can be used for further calculations. See the
examples for more information.

	fetch_converter_parameters() – get all values related to
the converter

	fetch_attributes_of_commodity_sources() – get the values
of the commodity sources

	get_combined_bus_balance() – combine buses in a
multiregion model

	get_converter_balance() – the energy balance around
converter to calculate emissions and costs

TABLE of LABELS!!!!

 nav.xhtml

 Table of Contents

 		
 Contents

 		
 deflex - flexible multi-regional energy system model for heat, power and mobility

 		
 Installation

 		
 Examples

 		
 Improve deflex

 		
 Citing deflex

 		
 Gallery

 		
 Documentation

 		
 License

 		
 Installation guide

 		
 Basic version

 		
 Installation of a solver (mandatory)

 		
 Additional requirements (optional)

 		
 Usage guide

 		
 DeflexScenario

 		
 Load input data

 		
 Solve the energy system

 		
 Store and restore the scenario

 		
 Analyse the scenario

 		
 Scripts

 		
 Console scripts

 		
 Python scripts

 		
 Input data

 		
 Overview

 		
 High-level-input (mandatory)

 		
 Electricity sector (mandatory)

 		
 Heating sector (optional)

 		
 Mobility sector (optional)

 		
 Other (optional)

 		
 Results

 		
 Restore results

 		
 Postprocessing

 		
 Custom postprocessing

 		
 Export all results

 		
 Get common values from results

 		
 Analyse flow cycles

 		
 Analyse the energy system graph

 		
 Get dual variables

 		
 CHP allocation

 		
 Arrange parts of the results

 		
 Combine results and parameter

 		
 Plots

 		
 General tools

 		
 Reference

 		
 Scenario

 		
 Scenario class

 		
 Read/Write a scenario

 		
 Compute scenario

 		
 Advanced scenario methods

 		
 Scripts

 		
 Python scripts

 		
 Console scripts

 		
 Postprocessing

 		
 Restore dumped scenarios

 		
 Analyse and draw graph

 		
 Analyse cycles

 		
 Basic results processing

 		
 Advanced results processing

 		
 Tools for Electricity models

 		
 Geometry examples for plotting

 		
 General tools

 		
 CHP allocation tools

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Development

 		
 Authors

 		
 Changelog

 		
 0.3.1 (2021-05 ??)

 		
 0.3.0 (2021-03-25)

 		
 0.2.0 (2021-01-25)

_images/spreadsheet_examples.png
DE

[il

natural gas

O (0NN U1 [(W (N (O

deflex_2014_de22_heat

15878.09
15679.18
17707.87
21173.86
25371.81
22769.51
22551.43
22201.79
21126.17
20175.38

energy_source_level_2

capacity| co

DEO1

geothermal

hydro

solar

wind

DE02

geothermal

hydro

solar

wind

DEO3

hydro

solar

wind

DE04

hydro

0.2
22,
3346.2
7618.9
0

0.1
36.4
47.9
279.6
2076.3
3052.8
268.7

613.0 DE
624.7 diesel petrol
675.1 0 47829
779.1 1 47829
943.1 2 47829
1062.7 3 47829
1050.9 4 47829
1028.1 5 47829
1002.3 6 47829
969.7 7 47829
949.0 8 47829
capacity| count | fuel | efficiency | variable_cc
bil gy 653.546 1235 bioenergy 0.417
. EO1 natural gas 1 104.8816 8 natural gas 0.38
N natural gas 2 61.33429 1 natural gas 0.513
waste 151.3 7 waste 0.33
natural gas 86.01171 1 natural gas 0.58
E02 oil 37.61 1 oil 0.377
waste 24 1waste 0.33
bil gy 161.8589 564 bioenergy 0.417
lignite 1 38.16599 1 lignite 0.35
. E03 lignite 2 36.97861 2 lignite 0.383
natural gas 1 79.37807 2 natural gas 0.391
natural gas 2 14.9915 1 natural gas 0.531
i gy 297.8451 700 bioenergy 0.417
DEO4 lignite 1 3767.141 9 lignite 0.39

_images/math/08eb1944a6823019b46db131a19747de01d79b9d.png

_images/math/0eb1f232eb9e9bd66f6f5bc611676a93c408fedb.png
weight = weight - 10weght-exponent

_images/math/05e8b795040ff62bdb94b053c1e502e4f8dbccec.png
et =

el

Nel + M

Mih

_images/math/4c3533edbf6a435454e33d0855dc01208889afae.png
CXel fth

_images/math/4fe4642f183cf611b7f3f340a991a77cff0e1e20.png
Qe

Jp—
Net + Ten

_images/math/36318a4f6da559082425aa3df41e5c038d1d8137.png

_images/math/7d4e7c78709517e1454004213a0548fbd03e7985.png
et =

ith
Nel + Min

_images/math/903760ec630ae366d50a28061f9db23d357c3c5d.png
J fuel el fth

_images/math/537471581fa65f641b78a7038d32e9af7c0f8a2e.png

_images/math/7a16ae86458da96ade96a8e845991eb0814eeb15.png
fpuet et = o fruetth = o

_images/math/a24560a341918fb94cc5aba94027e381488d8f5f.png
p + g

_images/math/9a7f3850186276516637965410c5116d9545ccc3.png
th

_images/math/9f92cb41bd25808a2b12e31d69d0cfa7ce4424d3.png
el

_images/math/ff7ed67f3761a4d2adaca3a233d0bf9f089750be.png

_static/ajax-loader.gif

_images/math/b60e2191a17410fc50d540c78388ef6f9207ca6d.png
o = Tebrel (et Mth
T \Tetref Tihref

_images/math/de03dab204dfdc3bcd1f5fb6b7e0c110296e80e1.png
(e}

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

